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Abstract

Single-shot structured light scanning has been actively
investigated as it can recover accurate geometric shapes
even in dynamic scenes. Since many single-shot approaches
focus on improving depth accuracy, recovering the intrinsic
properties of the scene, such as albedo and shading, is also
valuable. In this paper, we propose a novel method that re-
constructs not only the metric depth but also the intrinsic
properties from a single structured light image. We extend
the conventional color structured light model to embrace
the Lambertian shading model. By using a color phase-
shifting pattern, we parameterize the captured image with
only two variables, albedo and depth. For an initial solu-
tion, a simple but powerful method to decompose sinusoids
from the input image is presented. We formulate a non-
linear cost function and jointly optimize albedo and depth
efficiently by calculating the analytic Jacobian. We demon-
strate that our algorithm works reasonably on various real-
world objects that exhibit challenging surface reflectance
and albedo.

1. Introduction
Structured light is a method that measures depth by an-

alyzing projected pattern(s) on the scene. It is known to be

one of the most successful approaches for acquiring accu-

rate geometric shapes and has been applied to a broad range

of areas such as digital heritage, reverse engineering, and

3D printing.

Among various types of structured light patterns [15],

the continuous sinusoidal function is widely used since it

gives dense and precise correspondences with sub-pixel pre-

cision. Scharstein and Szeliski [16] utilize dozens of pat-

terns consisting of various gray-codes and phase-shifted si-

nusoids. This method is used to obtain the ground-truth

depth maps for stereo matching evaluation. Gupta et al. [6]

introduce multiple high-frequency patterns which are robust

to inter-reflection. Other works utilize multiple color chan-

nels to acquire depth from a single-shot structured light.

Huang et al. [9] design a color phase-shifting pattern which

contains three phase-shifted sinusoidal images for RGB

color channels, which has been improved by considering

the response curve between camera and projector [10].

Compared to these approaches focusing on accurate

depth acquisition, we present a novel structured light

method which produces not only the metric depth but also

the intrinsic properties of the scene (e.g. albedo and shad-

ing). To our knowledge, the proposed method is the first at-

tempt to compute depth, albedo and shading from a single-

shot structured light image, jointly. Our method also differs

from geometry refinement approaches utilizing shape-from-

shading [4, 7] or photometric stereo [13] because we solely

utilize an image of the scene lightened by a structured light.

Our method is inspired by the color structured light

model [3] where the observed image intensities are formed

as the multiplication of reflectance and pattern intensities.

We extend this model to embrace the well-known Lam-

bertian shading model by substituting the reflectance with

albedo and shading, which are determined by the depth and

the lighting direction. By adopting the sinusoidal-function-

based pattern [9, 10], we parameterize the observed inten-

sities with two variables, i.e. albedo and depth. Afterwards,

the optimization that minimizes the residual error between

the observed image and a synthetic image rendered by our

model is done for estimating both albedo and depth.

From the perspective of estimating albedo and shading

(obtained from depth), our method can be related to the

intrinsic image decomposition problem which decomposes

albedo and shading from a single natural image [17, 2].

Compared to these approaches, our method fully exploits

the structured light constraint to decompose depth and in-

trinsic images efficiently. Based on the Lambertian shad-

ing model, we develop a non-linear optimization framework

that jointly estimates the disparity map (depth map when

the camera-projector rig is calibrated) as well as the albedo

map. Since our energy function is efficiently parameterized,

an analytic form of Jacobian of the energy function can be

computed in a closed form, which makes the subsequent

optimization step efficient.
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Figure 1. An overview of our algorithm. From a single color image illuminated by a structured light source, our method initially estimates

surface albedo and a disparity map which gives a depth map (described in Sec. 2.2). Our optimization stage (described in Sec. 2.3) refines

the estimation with our image formation model (described in Sec. 2.1). Note that all of the images in this figure are generated from the

single input image.

Compared to previous approaches that capture color im-

ages and depth maps using two heterogeneous cameras,

such as Kinect [1], our method is free from the burden of the

alignment problem between the color image and the depth

map. This relieved issue on the multi-modal sensor calibra-

tion is another surplus of the proposed scheme. In addition,

our approach does not require a white pattern image for the

intrinsic image decomposition. Our algorithm is applica-

ble to high-frame-rate video capture by simply utilizing a

high-frame-rate color camera.

2. Proposed Method

We describe our method to estimate depth and albedo

from a single structured light. Throughout this paper, we as-

sume that the camera is located on the right side of the pro-

jector. Also, the camera and the projector are calibrated and

their image domains are rectified where all epipolar lines

become horizontal. Therefore, any point correspondence

between the two images can be described with a disparity

d. For instance, a point x = (x, y) in the rectified camera

image domain corresponds to x′ = (x−d, y) in the rectified

projector image domain.

The overview of the proposed method is shown in Fig. 1.

From a single color image of a scene illuminated by our

structured light, the proposed method initially estimates the

surface albedo and the disparity map. Then our non-linear

optimization refines the estimates based on the proposed

image formation model.

This section is composed of four subsections.

In Sec. 2.1, the proposed image formation model is

introduced. In Sec. 2.2, we suggest a simple but effective

method to obtain initial depth and albedo. A non-linear

optimization for refining depth and albedo according to the

proposed image formation is described in Sec. 2.3.

2.1. Image Formation Model

When a diffuse scene is illuminated by a color structured

light pattern, we can regard the color image of the scene to

be formed by the multiplication of surface reflectance and

the intensities of the projected structured light pattern. For

modeling this idea mathematically, we propose a linear im-

age formation model for an image intensity I as

⎡
⎣ Ir(ar, d)
Ig(ag, d)
Ib(ab, d)

⎤
⎦=n(d)ᵀl(d)

⎡
⎣ar 0 0
0 ag 0
0 0 ab

⎤
⎦
⎡
⎣Sr(d)
Sg(d)
Sb(d)

⎤
⎦ , (1)

where d is the disparity, {·}ᵀ the vector transpose, n ∈ R
3

the surface normal vector, l ∈ R
3 the light direction,

a{r,g,b} the color albedos, and S{r,g,b}(d) the sinusoidal in-

tensities emitted from the projector for each color channel.

In Eq. (1), we omit x from I,n, l and d for simplicity.

In this model, it is assumed that the surface exhibits a

Lambertian shading with multi-channel albedos and that the

ambient light is negligible. Compared to the previous model

proposed by Caspi et al. [3], our new model has the shading

component, nᵀl in Eq. (1). It is worth noting that the image

can simply be parameterized with albedo and the disparity.

Among various continuous coding methods, we use

phase-shifting. The phase-shifted sinusoidal pattern

S{r,g,b} for each channel in our single pattern is defined as

Sn(x, d) = (1−α)+α sin

(
2π(x−d)

T
− 2nπ

3

)
, (2)

where n ∈ {0, 1, 2} stands for the red, green, and blue chan-

nels of the pattern, T is the period of the sinusoidal function

in pixels, and α ∈ [0, 0.5] is the amplitude of the sinusoids

bounding Sn to be [0, 1]. The sinusoidal pattern is invariant

to the y coordinate since we are only interested in finding

correspondences along the horizontal epipolar lines.
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Figure 2. Initial estimation step. (a) Input image. (b) Local maximum intensities are marked in each color channel. (c) Estimated pattern-

free image. We interpolate peak intensities of the input image to get a pattern-free image which barely exhibits any sinusoidal patterns.

(d) Color intensity profiles correspond to the red horizontal line in (a). (e) Decomposed sinusoidal pattern profiles from the input image.

Details are described in Sec. 2.2.

2.2. Initial Estimation

In this section, we describe how the initial guesses for

depth and scene radiance can be obtained from the given im-

age. Compared to previous literatures [9, 10] which assume

uniform albedo over the scene, our method is designed to

capture scenes with varying albedo.

For this, we first decompose the sinusoidal pattern from

the input image and we estimate the initial depth from the

decomposed pattern image. It is done based on the charac-

teristics of the sinusoidal pattern. Since the pattern intensity

approaches 1.0 at every maximum point, the local maxima

in each color channel can be regarded as the scene radiance.

Therefore, these maxima can be regarded as sparse samples

of the scene radiance without the pattern. We upsample the

dense scene radiance from these samples by using bi-linear

interpolation. We name this scene radiance image as the

pattern-free image. One example is shown in Fig. 2. Lo-

cal maxima (peak points) are detected from the input im-

age and the peak intensities are interpolated to generate a

pattern-free image in Fig. 2 (c).

As we discussed in Sec. 2.1, images are formed by mul-

tiplying the Lambertian reflectance, multi-channel albedo

and sinusoidal pattern together. Based on this, we can di-

vide the original image by the pattern-free image to get a

pattern image which only contains the pure components of

the sinusoidal pattern. Ideally, the pattern image is equiva-

lent to the image that we get when we project the pattern on

an object having white albedo and maximum reflectance.

Fig. 2 (e) shows the color intensity profiles of the decom-

posed pattern image from Fig. 2 (d).

The pattern image lets us use the conventional ap-

proach [9] of determining the phase φ ∈ {0, 2φ} of the

sinusoidal pattern. From the decomposed pattern image I ′,
φ can be uniquely determined as

φ =
1

2π
atan

(
2I ′r−I ′g−I ′b√
3(I ′b−I ′g)

)
, (3)

where I ′{r,g,b} correspond to the red, green and blue inten-

sities of I ′.
Note that we cannot apply Eq. (3) directly on the in-

put image since the scene has multi-channel albedo. This

is because the multi-channel albedo scales the magnitudes

of three colored sinusoids differently. Fig. 2 (d) shows a

real-world example where the intensity profiles of different

channels have different scales of sinusoids.

Since the sinusoidal pattern has a period T and the arc-

tangent function gives a phase within only one period, φ
cannot directly determine the disparity. Therefore, we uti-

lize the recursive propagation method [10] to get an un-

wrapped phase φ′. Then, the disparity can be calculated

as d = x− Tφ′

2π .

2.3. Refinement of Depth and Albedo

This section introduces the optimization step to refine

the depth and albedo. To simplify the problem, we param-

eterize the shading image with the disparities. The parame-

terization and the non-linear optimization algorithm are de-

scribed in this section.

2.3.1 Parameterization of Shading

We derive the normal vector n and the lighting vector l in

terms of d. This allows us to describe the Lambertian shad-

ing with only local disparities so that the optimization prob-

lem becomes simpler.

As we mentioned at the beginning of Sec. 2, the camera

and the projector are calibrated and their images are recti-

fied. Since we can consider the projector to be a pinhole

camera, we can apply the same camera model to the projec-

tor as follows:

Kc =

⎡
⎣ fx 0 xc

0 fy yc
0 0 1

⎤
⎦ , Kp =

⎡
⎣ fx 0 xp

0 fy yp
0 0 1

⎤
⎦ (4)

where f{x,y} are the focal lengths for the rectified images,



and (xc, yc), (xp, yp) are the principal points of the cam-

era and the projector, respectively. Since all epipolar lines

are aligned horizontally, yc and yp are the same. Also

the relative pose between two rectified sensors is a pure

translation [−b, 0, 0]
ᵀ

along the x-axis where b is the met-

ric baseline between the two sensors. When a 2D point

x = [x, y]
ᵀ

in the rectified camera image corresponds to

a point x′ = [x− d, y]
ᵀ

in the rectified projector image, the

corresponding 3D point X is described as a function of x
and d as:

X =

[
b(x−xc)

d−xc+xp
,

fxb(y−yc)

fy(d−xc+xp)
,

fxb

d−xc+xp

]ᵀ
. (5)

Since the projector is the only light source, the lighting

direction l for this 3D point can be approximated as the

direction of the ray from the center of the projector to X.

Thus, l is computed as the unit vector of the normalized

coordinates of x′, which again is a function of x and d as:

l(x, d) ∼
[
x− d−xp

fx
,
yp
fy

, 1

]ᵀ
. (6)

The surface normal n at X is given by the surface gra-

dient vector which we approximate as the unit vector of the

cross-product of two adjacent vectors as:

n(x, d) ∼ (X−Xu)× (X−Xr) (7)

where Xu and Xr are the 3D points of the neighboring pix-

els above and to the right in the camera image. The Lam-

bertian shading is then obtained as nᵀl. The initial albedo

is estimated by dividing the pattern-free image by the Lam-

bertian shading image.

2.3.2 Non-linear Optimization

In this section, we optimize the initial depth and the albedo

to find the best albedo map A∗ and the disparity map D∗

by minimizing the following non-linear objective function:

{A∗,D∗}=argmin
A,D

∑
p∈M

(Op−Ip(ap, dp))
2 (8)

+λa

∑
p∈M

∑
q∈Np

(ap−aq)
2+λd

∑
p∈M

∑
q∈Np

(dp−dq)
2,

where p ∈ M stands for every non-zero pixel in the

image with albedo ap ∈ A and disparity dp ∈ D, Op is

the observed image intensities, Ip(ap, dp) is the rendered

image intensities, and q ∈ Np represents the neighboring

pixels of p.

Our optimization consists of three terms. The first term

enforces that the rendered image should be similar to the

observed image. The second and the third terms regulate

smoothness of the albedo map and the disparity map, re-

spectively. λa and λd are balancing weights that control the
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Figure 3. Refinement of the initial guess by using the proposed

optimization. The first row shows the initial guess acquired

from Sec. 2.2 and the second row shows the result of the optimiza-

tion described in Sec. 2.3. (a) Estimated albedo map, (b) surface

normal map, (c) shading map, (d) absolute depth error (mm).

Figure 5. The camera-projector system used in this paper.

importance of the two smoothness terms. Similar to previ-

ous approaches for intrinsic image decomposition [2], we

also assume that albedo and depth are spatially smooth.

To solve this non-linear problem, we utilize the

Levenberg-Marquardt method implemented in Matlab us-

ing analytic Jacobian which is easily derived thanks to our

parameterization. During this process, the parameters are

iteratively updated to reduce the residual error in a gradient

descent manner. In our experiment, this optimization took

approximately one minute for 0.1M pixels of an image.

Fig. 3 shows the initial estimates and the optimization

results. It is shown that the estimated albedo, shading and

depth are noticeably improved by the proposed method.

Also, Fig. 4 shows how the estimates are optimized along

the iterations. At the third iteration, albedo becomes con-

verged and shows similar texture to the ground-truth. The

depth error has reduced and converged within seven itera-

tions. For most of our real-world datasets, seven iterations

had been found to be enough for convergence.

3. System Configuration

In this section, we introduce our camera-projector rig

and explain our geometric/photometric calibration. Our
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Figure 4. Intermediate images in our iterative optimization step. The first row shows the input image and albedo maps after each iteration.

The initial estimation from Sec. 2.2 had obvious artifacts on the initial albedo. The iterative optimization decreases the albedo error and

depth error until the seventh iteration. Note that the albedo and depth map are jointly refined using our refinement algorithm.

camera-projector rig consists of a Grasshopper3 camera by

Point Grey, Inc. with 1280 × 800 image resolution and an

LG color projector (See Fig. 5) with the same resolution

and a refresh rate of 60Hz. The shutter speed of the camera

is set to 33ms. The camera lens parameters are 12.5mm and

f/5.6.

3.1. Geometric Calibration

We use a simple camera-projector calibration method

proposed by Moreno et al. [12] Based on the estimated

parameters, we rectify the camera and the projector do-

mains [8]. Since the projector has some lens distortion, we

intentionally generate an inversely distorted pattern to emit

an undistorted pattern on the scene.

3.2. Photometric Calibration

In order to have image intensities which are linearly pro-

portional to the scene radiance, we calibrate the photomet-

ric properties of the camera and the projector. We apply

the rank-minimization approach to linearize the camera re-

sponse function [11] and we apply the vignetting correction

algorithm [5] to alleviate the intensity degradation. For the

gamma correction of the projector, we adjust the intensi-

ties of the pattern image using a lookup table. Also, there

was a cross correlation within red, green and blue chan-

nels. Therefore, we adopt the linear cross-correlation model

C ∈ R
3×3 in [3]. In this model, C maps the emitted radi-

ance (pure red, green and blue with varying intensity) from

the projector to the radiometrically calibrated camera. We

get C from pairs of emitted intensities from the projector

and observed intensities from the camera. The effect of the

cross correlation can be removed by multiplying C−1 to the

color intensity vector.

4. Experimental Results

In this section, we evaluate our algorithm on various

kinds of objects. One synthetic example is already shown

in Fig. 1. To check the validity of our algorithm on challeng-

ing shading models, we focus on real-world experiments.

We conduct real-world experiments by using the camera-

projector system in Fig. 5. For generating the sinusoidal

pattern, we follow the idea suggested by Gupta et al. [6]

which concludes that high-frequency patterns are robust

against interreflection. Therefore, we set T = 10 in units of

pixels which makes sinusoids of short periods for our sys-

tem. For the amplitude α in the sinusoidal pattern, we ob-

served that a small offset helps to get stable results because

the projector is prone to emit low light. Therefore, we set

α = 0.4 to make S be bounded within [0.2, 1]. λa = 0.5
and λd = 0.1 are used for the optimization.

To evaluate the accuracy of our depth estimation re-

sult, we obtain the ground-truth depth by using the well-

known structured light method proposed by Scharstein

and Szeliski [16]. This method uses dozens of time-

multiplexing patterns to achieve accurate depth measure-

ment. Throughout this paper, we use the metric depth error

compared to this method for evaluation.

4.1. Real-world Objects

For evaluating our algorithm on real-world objects, we

take five objects with varying albedo and depth. Fig. 6

shows our results on the objects. From top to bottom, the

datasets are named as TUMBLER, PIGGY-BANK, T-SHIRT,

MUG, and HAND.

Each of these objects are made of different materials

such as plastics (TUMBLER and PIGGY-BANK), fabric (T-

SHIRT), ceramic (MUG), and human skin (HAND). How-
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Figure 6. Intrinsic images and depths from real-world objects. (a) Scene illuminated by our structured light pattern which is a sole input of

our pipeline. (b) Estimated albedo. (c) Estimated Lambertian shading. (d) Estimated surface normal. (e) Estimated depth map. (f) Depth

error in millimeter unit. Images of HAND dataset are rotated 90 degrees counter-clock wise for better visualization.

ever, the promising results imply our method works well

not only on the Lambertian-like surfaces. Even though the

estimated albedo maps are smooth, we can observe that, ex-

cept for the boundaries, they are homogeneous as expected.

Most regions in the depth maps have errors less than 1mm.

For all of the datasets, the mean of absolute depth error is

less than 2mm.

In PIGGY-BANK and MUG dataset, there are strong spec-

ular regions which do not obey our Lambertian-shading-

based model. However, if we study the estimated depth

map, the specular regions do not severely distort the solu-

tion. This is mainly due to the constraint of the light con-

dition (sinusoidal light pattern) which is used in the non-

linear optimization. Although the surface does not obey

Lambertian reflectance, the optimization step favors depths

that generate similar shapes of sinusoids as those in the in-

put image. Therefore, the optimization results in finding a

solution whose albedo is adjusted to minimize the residual

error.

The result also shows some issues to be improved in
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Figure 7. Evaluating accuracy of estimated depth map. We com-

pare our method with Zhou et al. [18] utilizing the De Bruijn se-

quence and Je et al. [10] utilizing a similar pattern as ours. The

table shows the mean and the variance of the depth error compared

to the ground-truth depth.

our algorithm. As we introduced in Sec. 2.2, the pattern-

free image is generated from the interpolation of the local

maximum intensities. However, due to the lack of samples

around the thin structure (for example, the handle in MUG)

it makes a wrong initial guess. This wrong guess cannot

be recovered by our refinement algorithm. We also observe

strong wiggling on the nose area in PIGGY-BANK. This usu-

ally happens on regions with very strong chroma. For those

regions, we find that the projected sinusoidal pattern is ob-

served as clipped sinusoids, hence the refinement stage does

not work properly.

4.2. Comparison with Existing Methods

We compare our depth map with other methods proposed

by Zhou et al. [18] and Je et al. [10] that use single-shot pat-

terns. Zhou et al. use the De Bruijn sequence which makes

unique codes between neighboring color stripes. Compared

to the De Bruijn approach, our method can generate the

depth map with sub-pixel accuracy. Since Je et al. [10]

utilize a similar phase-shifting pattern, the method may be

basically identical to ours, however, their method cannot be

applied on colored objects because it assumes that the scene

albedo is only white. Fig. 7 shows that our depth quality

outperforms that of the others.

4.3. Application: Re-lighting of Human Face

As a possible application, from estimated albedo and

depth, we can synthesize new images with certain light con-

ditions at different viewpoints. We captured a human face

using our system and obtained the intrinsic images as shown

in Fig. 8. Since our method can handle varying albedo, we

can capture a human face without white powder makeup

which is conventionally used in previous methods to make

a uniform surface albedo.

5. Discussion
In practice, our initial estimation algorithm may not be

ideal because of the followings reasons: 1) Our initial guess

is estimated by a step-by-step process, which implies that

the error can be accumulated. 2) Estimating a pattern-free

image is prone to depth discontinuity because the method

cannot correctly interpolate peak intensities from unreliable

or missing samples. 3) Due to the effects of cast shadow,

specularity, highly textured albedo or non-Lambertian shad-

ing, the peak positions can be drifted. 4) If the texture of the

scene is complex or the geometry has significant depth dis-

continuity, our approach produces wiggling depth as shown

in Fig. 6 (e).

Another weakness of the proposed method may be the

dependency on the object colors. Since the proposed

method requires three channel observations to decode the

phase-shifting pattern, objects having albedo close to the

primary colors (red, green or blue) could not guarantee to

give good results. The question of measuring the correct-

ness of estimated surface albedo is another issue.

6. Conclusion
In this paper, we propose a method to reconstruct both

the metric depth and the intrinsic properties i.e. albedo and

shading, from a single structured light image. The pro-

posed method extends the conventional color structured

light model by adopting the Lambertian shading model.

Based on the extended image formation, we first detect peak

points with local maxima in each color channel and interpo-

late the samples to estimate the initial albedo and depth of

the scene. The parameterization of the normal, the lighting

direction and the sinusoidal pattern with the disparity makes

the optimization step simple and efficient. The effectiveness

of the proposed method is shown from the real experiments

on various multi-albedo objects and it shows the feasibility

of estimating both albedo and shape simultaneously from a

single-shot structured light. In the future, we plan to im-

prove our method by designing a robust energy function to

handle outliers. Careful consideration on the non-isotropic

characteristics of the structured light source such as [14] is

another interesting direction.
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