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Abstract 

We propose deep virtual markers, a framework for estimat- 

ing dense and accurate positional information for various 

types of 3D data. We design a concept and construct a 

framework that maps 3D points of 3D articulated models, 

like humans, into virtual marker labels. To realize the 

framework, we adopt a sparse convolutional neural net- 

work and classify 3D points of an articulated model into 

virtual marker labels. We propose to use soft labels for the 

classifier to learn rich and dense interclass relationships 

based on geodesic distance. To measure the localization 

accuracy of the virtual markers, we test FAUST challenge, 

and our result outperforms the state-of-the-art. We also 

observe outstanding performance on the generalizability 

test, unseen data evaluation, and different 3D data types 

(meshes and depth maps). We show additional applications 

using the estimated virtual markers, such as non-rigid 

registration, texture transfer, and realtime dense marker 

prediction from depth maps. 

1. Introduction 

Estimating positional information of surface points on 

articulated objects (such as humans and animals) is crucial 

for various applications such as virtual/augmented reality, 

movie industries, and entertainments [47, 11, 48, 13]. One 

common way to capture such information is that actors wear 

special suits with beacons that are tracked by a special opti- 

cal system equipped with multiple cameras. Markerless ap- 

proaches [29, 62, 30] have also been developed, but they 

are not as robust as using markers and more error-prone in 

difficult situations like fast motions. 

We introduce deep virtual markers , a framework that 

can instantly produce dense and accurate positional anno- 

tations for a 3D observation of an articulated object, such 

as a depth map of the object captured by a depth camera 

or a 3D point set sampled from the object. In contrast to 

prior works that predict 3D skeletons [51, 71, 66] or pose 

parameters of parametric models [8, 34], our approach di-
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Figure 1. Deep virtual markers instantly produce dense and ac- 

curate positional annotations from a mesh or depth map. Appli- 

cations of deep virtual markers include motion analysis/tracking, 

texture transfer, and non-rigid registration. 

rectly maps any observed 3D points to the canonical loca- 

tions, providing much richer information. As a result, our 

approach predicts dense and reliable makers that can be a 

useful tool for various applications, such as 3D motion anal- 

ysis, texture transfer, and non-rigid registration of human 

scans. Examples of the applications are shown in Figure 1. 

Our approach for dense marker prediction is learning- 

based, and it is built upon 3D sparse convolution [15]. Due 

to the fully convolutional nature of the neural network, 

the shape can be understood well in the cluttered or oc- 

cluded cases. The proposed framework accurately deter- 

mines dense marker positions via single feed-forward pass 

of the neural network. Therefore, our approach runs in real- 

time and it does not involve heuristic modules. 

To train the network, we propose a new dataset that con- 

sists of realistic depth renderings of template models. To 
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annotate dense supervisory labels, we begin with sparse 

marker annotations on the template models, and solve for 

heat equilibrium to obtain dense annotations, where the an- 

notation of a surface point is represented using the relative 

influences from sparsely annotated points. The annotated 

models are augmented with realistic motions from Mix- 

amo [2] and random poses that follows physical ranges of 

body joints. 

The positional accuracy of the predicted virtual markers 

are evaluated with several benchmarks that provides pre- 

cise correspondences, such as FAUST [9] and SCAPE [4]. 

Computing virtual markers of the two scans is equivalent 

to building dense correspondences, as virtual markers pro- 

vide positional annotations on common canonical domain. 

In the evaluation, our approach achieves the state-of-the-art 

performance in the non-rigid human correspondence identi- 

fication benchmark. We also perform cross-validation with 

different datasets. 

In contrast to prior works [42, 28, 57, 31, 38, 17, 43, 26, 

25], our deep virtual markers are applicable to various 3D 

data types, such as full 3D meshes, point clouds, and depth 

maps. Our approach is also intended to be applied for any 

articulated objects. Therefore, we prepare a new data set for 

animals as well, and we show that our approach can handle 

depth map of a real cat. Codes are publicly available.1 

In summary, our key contributions are as follows: 

• We propose a real-time approach to extract dense 

markers from 3D shapes regardless of data types, such 

as full 3D meshes and depth maps. 

• We propose an effective approach to annotate dense 

markers for template models for preparing training 

sets. We also propose a new dataset of dense markers. 

• Our approach achieves state-of-the-art performance on 

non-rigid correspondence identification task that re- 

quires accurate marker localization. 

• Experiment results show the generalizability of our ap- 

proach on various datasets and data types. We also 

demonstrate that our approach can handle various ar- 

ticulated objects such as humans and cats. 

2. Related Work 

The proposed deep virtual marker is closely related to 

the prior arts that are built for body part recognition, geo- 

metric feature descriptor, and non-rigid human body align- 

ment. We review representative approaches here, and the 

summary is shown in Table 1. 

Body part recognition. Several works have been proposed 

to segment body parts of articulated objects using color im- 

ages or depth images. Many approaches [68, 53, 37, 71,

 

1https://github.com/T2Kim/DeepVirtualMarkers. 

Table 1. Comparison with related work. Our approach is a 

learning-based real-time method that assigns dense markers. The 

proposed method can handle a mesh, partial observation (such as 

depth map), and multiple instances. Our approach does not require 

heavy pre-processing. In the table, FC Res., GCNN, MLP, AE, 

and RF indicate fully connected residual net, graph convolutional 

neural network, multi-layer perceptron, autoencoder, and random 

forest, respectively. Please see Sec. 2 for the details.
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SmoothShells [21]

 

-

 

✓

 

✓

 

‘20

 

FARM [43]

 

-

 

✓

 

✓

 

‘20

 

UnsupFMNet [31]

 

AE

 

U

 

✓

 

✓

 

‘19

 

SurFMNet [59]

 

FC Res.

 

U

 

✓

 

✓

 

‘19

 

CyclicFM [26]

 

FC Res.

 

Self

 

✓

 

✓

 

‘20

 

Deep Shells [22]

 

GCNN

 

U

 

✓

 

✓

 

‘20

 

Shotton et al. [63]

 

RF

 

S

 

✓

 

✓

 

✓

 

✓

 

✓

 

‘11

 

GCNN [45]

 

Geo. CNN

 

S

 

✓

 

✓

 

‘15

 

DHBC [70]

 

2D CNN

 

S

 

✓

 

✓

 

✓

 

✓

 

✓

 

✓

 

‘16

 

Nishi et al. [52]

 

2D CNN

 

S

 

✓

 

✓

 

✓

 

‘17

 

FMNet [42]

 

FC Res.

 

S

 

✓

 

✓

 

‘17

 

Fey et al. [23]

 

SplineCNN
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✓

 

✓

 

✓

 

‘18

 

FeaStNet [67]

 

GCNN

 

S

 

✓

 

✓

 

✓
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Lim et al. [41]

 

FC RNN
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✓
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3D-CODED [28]
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✓

 

✓
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S

 

✓

 

✓

 

✓
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✓
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✓
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66, 50, 63, 32, 52] focus on human part segmentation, 

whereas others target for animal part segmentation [68, 50]. 

As human part segmentation and human pose estimation are 

closely related to each other, some works try to tackle both 

problems simultaneously [71, 66, 50]. Since these works 

usually adopt data-driven approaches, they need annotated 

body parts for training. 

The works by Shotton et al. [63] and Nishi et al. [52] are 

close to our approach. Their methods use depth images and 

learn a classifier to assign human body part labels to depth 

pixels. However, the part labels obtained by the methods are 

too sparse to precisely align two human models of differ- 

ent shapes. In contrast, our approach generates dense labels 

enough for human body alignment. 

Geometric features. Traditional methods have been devel- 

oped for hand-crafted geometric features [33, 24, 60, 61, 64, 

5]. Recent methods use deep neural networks (DNNs), and 

GCNN [45], ACNN [10], and Monet [49] define convolu- 

tions on non-Euclidean manifolds. Other approaches adopt 

the graph convolutional network (GCN) to utilize the in- 

formative connectivity of input geometry [23, 67, 41, 27, 

69, 25]. FCGF [16] adopts 3D sparse convolutional net- 

work [15] to compute dense geometric features. 

Our approach is largely inspired by FCGF [16].



 

FCGF [16] shows high performance on partial observations, 

but it is crafted for rigid registration of point clouds. Our 

approach extends its applicability to non-rigid articulated 

objects, such as humans and cats. 

Non-rigid shape matching. Understanding human body 

shape and coherent geometric description are actively re- 

searched for 3D human body matching. Stitched Pup- 

pet [75] devises a part-based human body model and opti- 

mizes the parameters of each part to fit the target mesh. 3D- 

CODED [28] uses autoencoder architecture to deform the 

template mesh. LoopReg [7] proposes an end-to-end frame- 

work that utilizes a parametric model. The parameters are 

implicitly diffused over 3D space, and the approach utilizes 

a parametric model to find shape correspondence. There- 

fore, the representation capability of the model can restrict 

the final accuracy. 

After its introduction for shape matching, a functional 

map [54] has led many follow-up studies. FMNet [42] ex- 

tracts SHOT descriptors [61] and transforms them through 

a fully connected network. CyclicFM [26] proposes a self- 

supervised learning method that reduces cyclic distortions. 

While most functional map based methods use the Laplace- 

Beltrami operator [55] to construct the basis, Marin et 

al. [44] uses a data-driven approach by learning the probe 

function. GeoFMNet [18] uses KPConv [65] to enable the 

network to directly extract features from an input 3D shape. 

FARM [43] exploits non-rigid ICP algorithm to refine a 

functional map. Smooth Shells [21] and Deep Shells [22] 

simplify the shapes by reducing spectral bases, and they 

align the generated multi-scale shapes progressively in a 

coarse-to-fine manner. 

Functional map-based methods generally conduct pre- 

processing to construct the basis and need a mesh topology. 

In contrast, our method does not require a mesh topology at 

inference time and can handle various 3D data types. 

3. Method 

Our framework assigns dense virtual markers to an ar- 

ticulated model. A virtual marker indicates a position on a 

canonical 3D shape. Our approach takes a raw point cloud 

and produces a virtual marker for each input point. Our ap- 

proach is learning-based, so we prepare a new dataset for 

the training. For this procedure, we annotate sparse mark- 

ers on a canonical 3D model and densify them to cover the 

whole surface. 

3.1. Virtual markers 

Virtual markers are positional labels that are densely dis- 

tributed on the surface of a canonical 3D shape of an artic- 

ulated model. A method that predicts such positional labels 

can help us understand the 3D geometry. For instance, it 

can be used for direct texture map transfer between two 3D 

scans of human body without surface parameterization and 

finding correspondences, as shown in Figure 1. 

Our idea for defining virtual markers is to utilize the in- 

trinsic structure of the shape of an articulated object. For 

instance, humans have four limbs, one head, and identically 

working joints. In this manner, even if persons’ appearances 

are not the same, we can think of coherent markers that are 

placed on the human body. 

Similarly to ours, assigning markers on the surface of a 

human model and solving the label classification problem is 

the common procedure used in the previous works [63, 52]. 

However, the most noticeable difference is that the prior 

methods use hard labels of markers to indicate separate hu- 

man parts, as shown in Figure 2 (c). On the other hand, our 

virtual markers can smoothly indicate every single point on 

the surface of the human model as a soft label based on 

geodesic distance (Figure 2 (d)). 

3.2. Annotation 

To establish dense virtual markers for making a train- 

ing dataset, we begin with annotating sparse markers on 

the 3D mesh model using the joint positions of a 3D hu- 

man skeleton (Figure 2 (b)). Then, the sparse markers are 

densely propagated to cover the whole surface of the model 

by solving a heat equilibrium equation (Figure 2 (d)). Note 

that this procedure is to make a dataset for training. In the 

test time, only a single feed-forward network is used to di- 

rectly predict dense virtual markers from any type of 3D 

input data (depth images, point sets, or meshes). 

Sparse virtual markers. We annotate several points of in- 

terest on a mesh model with a rest pose (such as T-pose). 

Using the annotated points, we construct the skeleton of the 

template mesh model, and define sparse virtual markers. 

Consider a local cylindrical coordinate system ( ρ, φ, z ) 

that lies on the i -th bone of the skeleton (Figure 2 (a)). 

Origin of the coordinate system is an endpoint of the bone 

and its longitudinal axis corresponds to the direction of the 

bone. Consider rays emitted perpendicularly from the lon- 

gitudinal axis, which can be specified using two coordinates 

( φi 

, zi) . We uniformly sample a set of rays using the coor- 

dinates, and then the intersections of the sampled rays with 

the template mesh model become the sparse virtual markers 

from the i -th bone. As the surface area of the part associ- 

ated with each bone differs, we alter the number of samples 

for each bone. As a result, 99 markers are defined for our 

human model (Figure 2 (b)). In the case of a cat model, 

we define 57 sparse markers using the same approach. The 

detailed positions of the sparse makers are provided in the 

supplementary material. 

For acquiring such markers, it could be possible to use 

automatic rigging methods to detect the skeleton of the 

model [6, 72]. However, we experimentally found that these 

automatic methods often fail for challenging shapes. In-
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Figure 2. Virtual markers. (a) A sparse virtual marker in the local 

cylindrical coordinates of a skeleton. The red arrow is the ray used 

for sampling the marker. (b) Sparse markers on the surface of our 

human model. (c) and (d) Colored human models with hard and 

soft labels, respectively. (e) Our color-coding scheme to visualize 

soft markers. 

stead, we hired experienced 3D annotators to assign a pre- 

cise bone structure by user interaction. The user annotations 

include joint positions and bone orientations (polar axes of 

local cylindrical coordinate systems). 

Dense virtual markers. Given sparse markers, we may 

classify the surface points by assigning one-hot vectors (or 

hard labels) to the surface points. This process would re- 

sult in a conventional part segmentation [63, 52] dataset, 

as shown in Figure 2 (c). However, such regional labels 

would not consider any fine-level relationships with mul- 

tiple sparse markers. 

In this work, instead, we use a soft label scheme. Given 

S sparse markers, the label for an arbitrary surface point 

is represented as a S -dimensional vector, whose i -th ele- 

ment indicates an affinity with the i -th sparse marker. That 

is, a soft label can have multiple non-zero entries, differ- 

ently from a hard label. 

We acquire a soft label for every point on the surface by 

solving for heat equilibrium [6]. Let S = { s | 1 ≤ s ≤ S } 

denote the set of indices for sparse markers, and D = 

{ d | 1 ≤ d ≤ D } be the set of surface point indices on the 

template mesh. We define L ∈ RS × D, where ls,d 

indicates 

affinity between the d -th point on the mesh with the s -th 

sparse marker. A column vector of L is normalized, so that∑ 

s 

ls,d 

= 1 . If we define L⊤ = W that satisfy ls,d 

:= 

wd,s, the weight vector w s 

= [ w1 ,s 

, w2 ,s 

, ..., wD ,s]
T of 

the sparse markers s for each surface point is calculated by 

solving the following sparse linear system:

 

− ∆ w s 

+ H w s 

= H ps 

,

 

(1) 

where − ∆ is the Laplacian operator of the mesh, ps 

is a 

binary indicator vector, H ∈ RD × D is the diagonal matrix 

having the heat contribution of the sparse marker s to vertex 

d2. If sparse marker s is nearest to vertex d , ps,d 

is set to 

1 , and the d -th diagonal component Hd,d 

of matrix H is 

defined as 

c

 

D ( d,s )2 , where c is a constant (we use c = 1 ) 

and D ( d, s ) is the geodesic distance from vertex d to sparse 

marker s . If k virtual markers are equidistant from vertex d , 

ps,d 

= 

1

 

k 

and Hd,d 

= 

k c

 

D ( d,s )2 . Otherwise, ps,d 

becomes 0 . 

We solve the heat equilibrium condition in Eq. (1) for 

every sparse marker. As a result, we have the weight ma- 

trix W = [ w1 

, w2 

, ..., w S ] . The d -th row of matrix W 

becomes the weights of all sparse markers for vertex d . We 

set the d -th row of matrix W to the soft label l: ,d 

for vertex 

d . The computed soft labels are visualized in Figure 2 (e). 

This approach is related to the work of Baran et al . [6]. 

They compute weights between vertices and skeleton for 

mesh skinning. We extend the idea for computing soft la- 

bels for vertices on the template mesh. Besides, instead of 

Euclidean distance used in [6], we use the geodesic distance 

between a vertex d and a soft marker s to acquire ls,d. Com- 

puting soft labels takes about 150 seconds per model, but 

needs to be done only for training data preparation. 

3.3. Dataset 

With the proposed approaches to define sparse and dense 

markers, we build two datasets to train a neural network. 

Human dataset. The dataset is made with 33 full mesh 

models of humans. They are captured with Doublefu- 

sion [74] (6 models) and collected from Renderpeople [3] 

(17 models) and FAUST [9] (10 models). We subsample 

meshes of the human models to have 60k vertices for the 

annotation. The manual annotation is conducted by experi- 

enced annotators to provide 33 consistent joint positions. 

To deal with various non-rigid deformations, we aug- 

ment each template mesh model with diverse motions. We 

obtained 15,000 motions from Mixamo [2]. Note that we 

deform the annotated meshes , so we do not need to anno- 

tate the deformed models again. We use linear blend skin- 

ning (LBS) [35] to animate the template models. In addition 

to this pose augmentation, we deploy random movements to 

the joints of the body. The random motions are bounded by 

physical ranges of the joints. In this manner, we can obtain 

a diverse dataset with different people and poses. 

In addition to the pose augmentation, we extend the 

dataset for partial geometric observations, such as depth 

maps. We produce synthetic depth maps by rendering 

densely annotated mesh models from arbitrary viewpoints. 

Since a rendered depth pixel knows its original position in 

the annotated mesh, each depth pixel obtains a proper soft

 

2We denote the s -th sparse marker as s , and the d -th vertex as d for 

notational convenience.



 

label. We used 40 viewpoints for rendering. 

Note that we augment the densely annotated mesh model 

using the Mixamo and random poses on-the-fly in the train- 

ing phase. For the case of depth map generation, the dataset 

is augmented even more by using random viewpoints. This 

scheme introduces great diversity in our training dataset. 

Cat dataset. To demonstrate that our approach is applicable 

to other classes of articulated objects, we prepare another 

dataset for an animal shape. We select two cat models from 

SMAL [76], and use the same procedure for dense annota- 

tion of the models. 

3.4. Training 

We employ the ResUNet architecture based on sparse 

tensors [15] to classify 3D points of an articulated model. 

Details of the network architecture is provided in the sup- 

plementary material. The classifier directly utilizes soft la- 

bels desribed in Section 3.2 for the supervision. 

Our network employs a multi-class cross entropy loss de- 

fined as follows:

 

L = − 

D∑ 

d 

S∑ 

s 

ls,d log ( 

l 

′ 

s,d

 

∑S 

j 

el 

′ 

j,d

) ,

 

(2) 

where ls,d 

denotes the s -th element of a soft label l: ,d, and 

l 

′ 

s,d 

is the s -th element of the inferred soft label l 

′ 

: ,d 

for a 

vertex d . D are the number of vertices, and S is the number 

of sparse markers. 

As shown in Figure 2 (e), soft labels encode the smooth 

geometric relationships with adjacent surface points on the 

template mesh model. Consequently, without using any reg- 

ularization on the smoothness of the prediction, our trained 

network gets to predict smoothly varying virtual markers. 

Two approaches. We propose to train and test our network 

with two different configurations. 

(1) Ours-oneshot. In the first setting, for training the 

network, we use annotations for full mesh models together 

with partial observations (depths). In this case, the network 

can infer dense virtual markers for any input data (partial 

or full) instantly without per-view prediction and merging. 

This approach saves substantial computation time when in- 

ferring virtual markers for full mesh models. 

(2) Ours-multiview. In the second setting, we use only 

partial observations (3D point cloud of depth maps) to train 

the network. Then, to handle a full 3D model, we use the 

rendered depths of the model from 72 different viewpoints. 

We feed each rendered depth to our network and obtain 

dense virtual markers for 72 views. Finally, we aggregate 

them to obtain the dense virtual markers for the whole 3D 

model. For the aggregation, we convert and combine the 

72 rendered depth maps to a single point set, and the vir- 

tual marker for a vertex of the 3D model is determined

 

(a) (b) (c) 

Figure 3. Effects of soft labels. (a) A reference 3D model. (b) 

and (c) Visualizations of the weights of a sparse marker obtained 

from networks trained with hard (one-hot) labels and soft labels 

as supervision, respectively. Red and blue stripes show alternating 

weight intervals with gap of 0.2 in the range of [0.2 to 1]. Soft 

labels induce smooth isotropic weight distribution. 

by weighted averaging the virtual markers of the k -nearest 

neighbors in the point set. This approach is slower than 

Ours-oneshot , but it produces more reliable reasult due to 

the multiview concensus. 

3.5. Timing complexity 

We train and test our network with a workstation 

equipped with an Intel i7-7700K 4.2GHz CPU, 64GB 

RAM, and NVIDIA Titan RTX, Quadro 8000 GPU. The 

number of network parameters is about 38 million. Training 

takes about 3 ∼ 4 and 8 ∼ 10 seconds per iteration using 

partial observations (depths) and full mesh models, respec- 

tively. In test time, inference time is about 0 . 05 ∼ 0 . 07 sec- 

onds per a depth map or 3D point set, nearly achieving 20 

frames per second. 

4. Results 

4.1. Effectiveness of soft labels 

To analyze the effects of soft labels, we trained two net- 

works using hard labels and soft labels. Figure 3 visualizes 

the weights of a sparse marker obtained using the two net- 

works. We can find that the network trained with soft labels 

outputs smoothly varying virtual markers. 

4.2. Shape correspondence 

To validate the accuracy of virtual markers, we exten- 

sively evaluate with shape correspondence challenges. The 

motivations for this experiment are as follows. (1) A large- 

scale public dataset to measure the accuracy of dense 3D 

markers is not present. (2) Dataset for finding shape cor- 

respondences is well-established instead, and such datasets 

are captured with high-end 3D capturing systems. (3) Good 

performance on finding correspondences indicates consis- 

tent and coherent marker positions for diverse poses. 

FAUST challenge benchmark is the standard benchmark 

to measure the accuracy of finding correspondences from 

two high-quality human mesh models [9]. This challenge is
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(a) (b) [57] (c) [28] (d) [17] (e) [75] (f) Ours 

Figure 4. Example of FAUST correspondence finding challenge. 

We compare our results with BPS [57], 3D-CODED [28], Atlas- 

NetV2 [17], SP [75]. The matching between two meshes on the 

leftmost is obtained, and its accuracy is visualized using a jet color 

map. This is an example of the intra-subject test set, where the two 

meshes are captured from the same person with different poses. 

a good fit for validating the proposed deep virtual markers , 

since the accurate markers should be localized for precise 

matching between non-rigid models. 

The total dataset consists of 10 persons, and each per- 

son exhibits arbitrary 30 poses. Its ground-truth correspon- 

dence is not publicly available, so we submitted our results 

and obtained the evaluation results. The benchmark test set 

provides pairs of two full 3D scans. Each pair shows ex- 

treme pose variations from the same person (called intra- 

subject challenge) or different persons (called inter-subject 

challenge). Since our approach is not restricted to the per- 

son’s identity or pose variations, we report our performance 

for both tasks. The FAUST experiment is also a good way to 

check the generalization performance on pose and identity 

variations. 

For comparison, we refer to the numbers in the public 

FAUST benchmark leaderboard. The leaderboard includes 

the results of approaches that require manual annotations. 

Hence we compare only with the methods that do not re- 

quire manual inputs. The results are shown in Table 2. Our 

approach shows the most accurate results compared with 

prior works on both the inter- and intra-subject challenges. 

Visualizations of errors are shown in Figure 4. 

Comparison with DHBC [70]. The original FAUST chal- 

lenge only tackles the correspondence for two full meshes, 

which is called full-to-full correspondence identification. 

However, handling partial observations, such as depth 

maps, is also important for practical applications. For 

this reason, we additionally compare our approach with 

DHBC [70] that can handle full-to-full, full-to-partial, and 

partial-to-partial dense correspondences. 

Since DHBC is not shown on the FAUST leader- 

board [9], we conduct the comparison by following the eval- 

uation protocol suggested by Chen et al. [14]. The protocol 

uses some pairs of 3D scans in the FAUST training set and 

performs inter- and intra-subject challenges. The protocol 

reports the average error on all pairs (AE) and the average 

error on the worst pair (WE). Table 3 shows the results of 

the experiment on the full-to-full case. We also added the re- 

Table 2. FAUST challenge results (error in cm). We omit the re- 

sults of approaches that require manual annotations in the test 

time. Approaches are classified into learning-based (first three 

rows) and non-learning-based methods (the remaining rows).

 

Type of challenge

 

Method

 

Intra-subject

 

Inter-subject

 

SP [75]

 

1.568

 

3.126 

RobustCovex [14]

 

4.860

 

8.304 

Smooth Shells [21]

 

-

 

3.929

 

FMNet [42]

 

2.436

 

4.826 

3D-CODED [28]

 

1.985

 

2.769 

BPS [57]

 

2.010

 

3.020 

Unsup FMNet [31]

 

2.510

 

- 

LBS-AE [38]

 

2.161

 

4.079 

AtlasNetV2 [17]

 

1.626

 

2.578 

FARM [43]

 

2.810

 

4.123 

Cyclic FM [26]

 

2.120

 

4.068 

LSA-Conv [25]

 

-

 

2.501

 

Ours-oneshot

 

1.417

 

2.495 

Ours-multiview

 

1.185

 

2.372

 

Table 3. Additional comparison with DHBC [70] and Robust- 

Covex [14] using the FAUST training dataset (error in cm).

 

Intra AE Intra WE inter AE inter WE

 

RobustCovex [14] 4.49 10.96 5.95 14.18 

DHBC [70]

 

2.00 9.98

 

2.35 10.12

 

Ours-oneshot 2.26

 

3.93 2.44

 

4.56 

Ours-multiview

 

1.93

 

2.76

 

2.12

 

3.25

 

sults from RobuxtCovex [14]. Our approach favorably out- 

performs all the cases. In particular, our results show about 

three times smaller intra-subject and inter-subject WEs than 

other baselines. Besides, in our case, WEs are similar to 

AEs. This demonstrates that our approach is reliable and 

robust to different persons’ identities and various poses. 

In addition to the full-to-full comparison, we also per- 

form a quantitative comparison with DHBC [70] with 

full-to-partial and partial-to-partial 3D model pairs. The 

new pairs are obtained by rendering 3D scans from spe- 

cific viewpoints, and we used FAUST [9] and SCAPE [4] 

datasets for the rendering. The results are shown in Table 4. 

Our method outperforms DHBC [70] in these cases too. 

Various training and test sets. We verify the generaliz- 

ability of our method by changing the training and test 

sets. For this experiment, we use the dataset provided by 

Ren et al. [58]. The dataset contains re-meshed versions of 

FAUST [9] and SCAPE [4] datasets. 

Table 5 shows the results, where the evaluation is based 

on the protocol proposed by Kim et al . [36]. SCAPE dataset 

contains a single human model with various poses, and 

FAUST includes several models with various poses. Hence, 

for the case of testing on FAUST and training on SCAPE 

(F / S), the matching accuracies of some approaches [59, 

42, 28] are much lower than other combinations since the 

variety of model shapes for training is insufficient.



 

Table 4. Finding correspondences using full-to-partial (F2P) and 

partial-to-partial (P2P) datasets. We compare our results with 

DHBC [70] using the FAUST [9] and SCAPE [4] datasets for train- 

ing. For each three numbers, the first one is the error of DHBC, 

and the second and third are the errors of ours-multiview and ours- 

oneshot, respectively (error in cm).

 

Data

 

Type

 

Method 

(DHBC [70], Ours-multiview, Ours-oneshot)

 

Intra AE Intra WE Inter AE Inter WE

 

FAUST [9]

 

F2P

 

6.52 14.61 6.75 11.79

 

2.39

 

3.52

 

2.63

 

4.62

 

2.41

 

4.40

 

2.58

 

4.52

 

P2P

 

9.51 22.46 9.81 32.27

 

3.40

 

11.06

 

3.45

 

11.166

 

3.96

 

20.24

 

3.74

 

16.06

 

SCAPE [4]

 

F2P

 

4.33 11.76 - -

 

3.11

 

4.92 - -

 

3.23

 

7.29 - -

 

P2P

 

17.19 38.21 - -

 

8.32

 

27.76 - -

 

8.99

 

36.94 - -

 

Table 5. Normalized mean geodesic error (in %) using the dataset 

by Ren et al. [58]. This experiment validates the cases with various 

training and test sets. F and S denote FAUST and SCAPE, respec- 

tively. From top to bottom, the previous methods compared in this 

table are classified into three categories; axiomatic (no training), 

unsupervised learning, and supervised learning. The numbers ex- 

cept for ours are courtesy of [22].

 

Test / Training dataset

 

Method

 

F / F

 

S / S

 

F / S

 

S / F

 

BCICP [58]

 

15.0

 

16.0

 

-

 

- 

ZoomOut [46]

 

6.1

 

7.5

 

-

 

- 

Smooth Shells [21]

 

6.1

 

7.5

 

-

 

-

 

SurFMNet+ICP [59]

 

7.4

 

6.1

 

23.0

 

19.0 

Unsup FMNet+pmf [31]

 

5.7

 

10.0

 

9.3

 

12.0 

Deep Shells [22]

 

1.7

 

2.5

 

2.7

 

5.4

 

FMNet+pmf [42]

 

5.9

 

6.3

 

14.0

 

11.0 

3D-CODED [28]

 

2.5

 

31.0

 

33.0

 

31.0 

GeoFMNet+zo [18]

 

1.9

 

3.0

 

4.3

 

9.2

 

Ours-oneshot

 

2.1

 

2.7

 

4.9

 

3.1 

Ours-multiview

 

1.5

 

2.0

 

4.1

 

1.9

 

Note that some of the approaches [42, 28, 18] in Table 5 

use the ground-truth correspondences for training. In con- 

trast, we only use skinned synthetic shapes for training and 

augment the training set using Mixamo poses. It is clearly 

beneficial to utilize available human motions because ani- 

mated models are readily obtainable. 

4.3. Other results 

Unseen data. We show visual results of our method on two 

different types of unseen datasets - our real depth sequences 

captured with an Azure Kinect DK [1] and SHREC14 [56] 

dataset. For this experiment, we use the training dataset de- 

scribed in Sec. 3.3. The upper part of Figure 5 shows the 

results on unseen depth data. The depth sequences capture 

single or multiple people with various motions. Although

 

Figure 5. Estimated virtual markers in various unseen datasets. 

(upper part) From left to right, the subfigures show ordinary to 

challenging cases. The results show that our method is robust to 

occlusions and diverse poses, and multiple instances. (lower part) 

Estimated virtual markers on SHREC14 [56] dataset. The black 

dots on the surface indicate estimated sparse virtual markers. To 

decide the sparse virtual markers, we select the vertex with the 

highest confidence for each label. The results are consistent with 

various shapes and motions. Note that we used the training dataset 

described in Sec. 3.3, and these examples are not exposed for the 

training.

 

Figure 6. Example of a cat model. We train the network using 3D 

cat models obtained by SMAL [76] with proper random pose data. 

We then test the network on cat models in TOSCA [12] (the left 

four results) and a depth map of a real cat (on the right). The reli- 

able results indicate the wide usage of our deep virtual marker. 

real depth images are noisy, the results demonstrate that our 

method is reliable and robust. The lower part of Figure 5 

showcases color-coded models with our inferenced virtual 

markers. The results show that our method works well on 

unseen, various dynamic models. 

Cats. Figure 6 shows an example for a cat. It shows reason- 

able predictions on models in TOSCA [12] and a real depth 

image. 

4.4. Applications 

Non-rigid registration. Our approach predicts dense mark- 

ers, so the correspondence can help to solve non-rigid reg- 

istration. One example is shown in Figure 7. For non-rigid 

surface registration, we compare ours with Li et al.’s ap- 

proach [39] that is a popular baseline for performance cap-



 

(a) (b) 

Figure 7. Non-rigid registration. (a) A large misalignment around 

a leg due to fast motion cannot be recovered by a local alignment 

based approach [39]. (b) Correspondences from our method can 

successfully remedy such a large misalignment.

 

Figure 8. Texture transfer from a textured mesh to another mesh 

(first and second row) or a depth map (third row). In the mesh- 

to-mesh case, we transfer texture coordinates and apply texture 

mapping to the mesh. In the mesh-to-depth map case, we directly 

transfer the texture colors. The results show that our deep virtual 

markers produce sufficiently adequate correspondences even with 

clothed humans, significant shape differences, or depth noise. 

ture approaches [40, 20, 19, 40, 73]. Li et al.’s approach [39] 

progressively deforms a source mesh model to fit to the 

target one. If pose difference between two mesh models 

is large, it tends to get stuck at local minima since the 

method uses neighbor search for constructing vertex corre- 

spondences, as shown in Figure 7 (a). The misalignment is- 

sue can be alleviated by using dense vertex correspondences 

estimated by our approach, as shown in Figure 7 (b). 

Texture transfer. As another application, we present tex- 

ture transfer. By using dense correspondences obtained by 

our deep virtual markers, the texture in a source mesh model

 

Figure 9. Failure cases of our approach. The cases of loose clothes, 

body-to-object interactions, and intra-body close interactions are 

shown from left to right. 

can be instantly mapped to the target mesh model. Similarly, 

texture transfer can be performed between a full mesh and a 

depth map, as our deep virtaul markers can handle a variety 

of 3D inputs in a consistent way. Figure 8 shows examples. 

4.5. Limitations 

Although our approach is validated with many stan- 

dard 3D human models from FAUST [9], SCAPE [4], and 

SHREC14 [56], our virtual markers may not deal with hu- 

mans wearing highly loose clothes, such as long skirts and 

coats. In addition, our method is not very accurate for the 

cases of body-to-object and intra-body close interactions, 

as shown in Figure 9. We may consider a data-driven solu- 

tion, but our current pipeline for preparing a dataset requires 

human annotations, which is not directly applicable to peo- 

ple wearing challenging clothes. Human models interacting 

with objects are not tested as well. Future work would be to 

tackle these issues. 

5. Conclusions 

In this paper, we proposed deep virtual markers , a 

methodology that infers dense virtual marker labels for ar- 

ticulated 3D objects. Our approach can handle various types 

of input, including meshes, point clouds, and depth images. 

We proposed an effective method to annotate dense vir- 

tual markers on 3D meshes to build a training dataset. Our 

framework utilizes a fully convolutional neural network as 

a soft label classifier, and our-oneshot model applies sin- 

gle feed-forward operation to instantly assign dense mark- 

ers ( 0 . 05 ∼ 0 . 07 seconds). Compared to state-of-the-art 

methods, we showed a favorable performance in finding 

correspondences. Lastly, we demonstrated practical appli- 

cations such as texture transfer and non-rigid surface reg- 

istration. Our future work includes dealing with humans 

wearing highly loose clothes, such as long skirts and coats. 
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