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ABSTRACT

A typical gaze estimator needs an explicit personal calibration
stage with many discrete fixation points. This limitation can
be resolved by mapping multiple eye images and correspond-
ing saliency maps of a video clip during an implicit calibra-
tion stage. Compared to previous calibration-free methods,
our approach clusters eye images by using Gaussian Mixture
Model (GMM) in order to increase calibration accuracy and
reduce training redundancy. Eye feature vectors represent-
ing eye images undergo soft clustering with GMM as well as
the corresponding saliency maps for aggregation. The GMM
based soft-clustering boosts the accuracy of Gaussian process
regression which maps between eye feature vectors and gaze
directions given this constructed data. The experimental re-
sults show an increase in gaze estimation accuracy compared
to previous works on calibration-free method.

Index Terms— Gaze estimation, Saliency, Gaussian mix-
ture model, Gaussian process regression

1. INTRODUCTION

Gaze estimation has gathered much attention due to its var-
ious applications such as gaze sensing for marketing analy-
sis, interactive displays, and other human-computer interac-
tion applications [1]. Gaze sensing can achieve sufficient hu-
man attention tracking for the mentioned applications.

There are two main classes for gaze sensing, namely
model-based and appearance-based methods. Model-based
methods construct 3D eye models along with iris contour to
determine gaze directions. They are mainly concerned with
locating the pupil center and thus require high resolution IR
imaging and special camera settings which capture eyes very
closely. The difficulties of model-based methods are that
the geometry-based computations require sophisticated and
extensive calibration. On the other hand, appearance-based
methods are not computationally expensive and are robust
in ordinary capturing conditions; a user looks at a monitor
and a webcam is mounted on the monitor. Appearance-based
methods can be implemented using a single camera device.
However, previous appearance-based gaze tracking methods

require an explicit personal calibration process. This cali-
bration stage usually involves many discrete training fixation
points leading to an unnatural interaction [2, 3]. In a dis-
play environment, the person must stare at numerous discrete
points on the screen while a camera captures the person’s eye
images. Mapping the points to the eye images constructs the
gaze estimator. This is a tedious and time consuming process
and is one of the limitations of appearance-based methods.

Therefore, many gaze estimation approaches attempt to
remove the need for explicit personal calibration. Chen et
al. [4] combined image saliency with a 3D eye model. But
since it is a model-based approach, it requires special camera
settings. Sugano et al. [5] proposed a calibration-free method
in a computer using environment. It basically assumes that
the user looks at the position of the mouse during a click-
ing action. Yamazoe et al. [6] used an eyeball model and fit
the model to the user’s eye appearance for automatic calibra-
tion. However, It also requires special camera settings. Alna-
jar et al. [7] proposed calibration by matching gaze patterns
of other humans. But this approach also needs specific prior
datasets concerning numerous people and thus time consum-
ing. Nguyen et al. [8] proposed a Bayesian approach to esti-
mate gaze directions. It requires tunnable parameters for bet-
ter gaze estimation accuracy. Sugano et al. [9] constructed a
gaze estimator using eye images captured from a user watch-
ing a video clip and the saliency maps of each frame. A simi-
lar method [10] was done in addition to a feedback loop to op-
timize constituent saliency channel weights. They aggregate
saliency maps and connect corresponding eye appearances to
build a calibration-free gaze estimation method. However,
saliency aggregation of this method is based on hard cluster-
ing built upon heuristic measurements.

Our approach follows the gaze estimation pipeline by
Sugano et al. [9, 10]. In this pipeline, saliency aggregation is
essential to improve gaze estimation quality and reduce data
redundancy and computational cost. Compared to these liter-
atures [9, 10], our work puts an emphasis on saliency aggre-
gation and focuses on constructing a probabilistic framework
rather than relying on heuristic measurements. We do this
by constructing the GMM using an Expectation Maximiza-
tion(EM) algorithm in the eye feature space.
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Fig. 1. An overview of our gaze estimation system.

2. THE GAZE ESTIMATION SYSTEM

Our system is similar as the calibration-free gaze estimation
pipeline proposed by Sugano et al. [9]. The experimental
framework involves the user to watch a video clip. While
the user watches the video, a camera in front captures the eye
image for all video frames. Also, the saliency maps are ex-
tracted using Graph-based Visual Saliency (GBVS) [11] al-
gorithm for all video frames. This enables us to construct eye
images and corresponding saliency pairs. With this data set,
we can adaptively cluster the eye images (represented by eye
feature vectors). Clustering is done by an EM algorithm to
adaptively create Gaussian mixtures. According to the con-
structed GMM we can produce a weighted average eye fea-
ture vector and saliency map pair of all clusters. The weighted
average of saliency maps can be treated as a probability map
of gaze points. With this information, Gaussian process re-
gression(GP) learns the eye feature and gaze point mappings
to produce the gaze estimator. The gaze estimation system is
shown in Fig. 1.

3. SALIENCY AGGREGATION

Saliency maps give a rough cue of where the person is look-
ing. Thus, it carries valuable prior knowledge of the gaze but
individually does not always give reliable true gaze points.
The user may occasionally gaze at a non-salient point in the
video frame etc. Therefore in order to increase reliability of
gaze point estimation, saliency maps with similar eye images
must be aggregated to produce a ’salient peak’ around the true
gaze. Like this, we can increase the gaze estimation accuracy
as well as reduce the redundancy of training data.

In subsections 3.1 and 3.2, we give a theoretical explana-
tion on aggregation by GMM clusters and resulting datasets.
In subsection 3.3, we explain in detail how this is imple-
mented using the EM algorithm.

3.1. Aggregation by GMM clusters

In a mixture of Gaussian distributions, an observed eye fea-
ture vector e(i) has a corresponding latent variable z(i) that

specifies the mixture component that e(i) belongs to. Given
z(i) = j, we can say that e(i) is simulated from a normal
distribution with µj and Σj as parameters. This is mathemat-
ically shown in (1):

(e(i) | z(i) = j) ∼ N (µj ,Σj). (1)

Then by (1), we can say that:

P (e(i) | z(i) = j) = N (e(i) | µj ,Σj). (2)

With this information, we can construct a weighted average
of eye features and saliency maps for each cluster:

ej =

∑N
i P (e(i) | z(i) = j)(e(i))∑N

i P (e(i) | z(i) = j)
, (3)

pj =

∑N
i P (e(i) | z(i) = j)(si − sall)∑N

i P (e(i) | z(i) = j)
, (4)

where N denotes the number of all training pairs, si is i-th
saliency map and sall denotes average of all saliency maps.

Notice how P (e(i) | z(i) = j) from (2) can be used
as weights for the weighted average of saliency maps. This
makes sense in that it follows the same weighting scheme as
the weighted average of eye feature vectors. Now we have the
dataset:

Dp = {(p1, e1), ..., (pM , eM )}, (5)

where pi from (4) can be used as a probability distribution of
gaze positions.

3.2. Inferring gaze points from probability maps

Originally, Gaussian regression (GP) estimatesP (g∗ | e∗, Dg)
where Dg denotes the dataset containing gaze positions in-
stead of probability maps. We only have Dp from (5) and
therefore we must somehow infer gaze positions from prob-
ability maps. In theory, a reformulation of GP can be estab-
lished in order to predict P (g∗ | e∗, Dp) by:

P (g∗ | e∗, Dp) =
∑
g1

· · ·
∑
gM

P (g∗ | e∗, Dg)P (Dg | Dp).

(6)



However, the summation is computationally expensive, so
we approximate Dg by taking the maximum posterior points
from P (g∗ | e∗, Dp) as gaze points.

3.3. Adaptive clustering with EM algorithm

Here we specify the implementation details of aggregation
by GMM clustering by the EM algorithm. We formulate an
adaptive EM algorithm fit for our use of clustering eye feature
vectors. The following is the algorithm:

(E-Step) For each i, j set:

w
(i)
j := P (e(i) | z(i) = j;µj ,Σj). (7)

(M-Step) Update parameters if w(i)
j > τ :

µj :=

∑N
i=1 w

(i)
j e(i)∑N

i=1 w
(i)
j

, (8)

Σj :=

∑N
i=1 w

(i)
j (e(i) − µj)(e

(i) − µj)
T∑N ′

i=1 w
(i)
j

, (9)

where wj is the weight for the jth cluster, and τ denotes the
weight threshold.

In the E-step, we calculate the weights of e(i)’s as shown
in (7). Since we do not know how many clusters there should
be, we assign e(i) to cluster j whenever w(i)

j > τ . Otherwise,
clusters are adaptively created. In the M-step, equations (8)
and (9) uses (7) as weights for updating parameters.

3.4. Comparison with other approaches

Our work emphasizes the saliency aggregation part with a the-
oretical approach. Sugano et al. [9] applies hard clustering of
the eyes by a heuristic similarity measuring method. Specif-
ically, an eye feature belongs to a cluster if it is analogous
to the mean of the cluster. If it is not, the eye feature makes
another cluster. The fixed threshold is used for the affinity
decision. The next work by Sugano et al. [10] implements
a feedback loop to refine saliency maps but is essentially the
same as [9]. Therefore, [9, 10] suffers from bias and relatively
low accuracy. Our method offers a natural way of soft clus-
tering as shown in Fig. 2(b) for both eye feature vectors and
saliency maps.

Intuitively, it makes sense to cluster eye features with a
probability distribution (Gaussian in our approach). Within
clusters there will be subtle differences in features that each
correspond to different gaze points and thus, must be prob-
abilistically modeled to compensate for it. Since gaze esti-
mation is very sensitive to training inputs, it is essential to
incorporate this operation. Notice from Fig. 2 that [9, 10] im-
poses hard cluster assignments for eye feature vectors. On the
other hand, our method has soft assignments w(i)

j .

Fig. 2. Diagrams illustrating the clustering methods of both
(left) Sugano et al. and (right) proposed.

Theoretically, during the Gaussian process regression, we
assume a noisy observation model:

gi = f(ei) + εi, (10)

where gi and ei represents the predicted gaze point and the
input eye feature vector respectively, and εi represents the
noise term. Gaussian process regression will basically give
gi as a function of ei with the noise term εi = N (0, ς2i ).
Noisy observation model assumes that the data (training in-
puts) has noise modeled by a Gaussian centered around f(ei).
In other words, it assumes that ei from (3) are Gaussian clus-
ter centers, which is correct. Thus by the GMM clustering
method, the noisy observation model (10) with the noise term
εi = N (0, ς2i ) is a suitable assumption. This is another justi-
fication using GMM as a clustering method.

4. EXPERIMENT

We carry out experiments in two parts. First, we measure the
gaze estimation error in degrees after training with a 5 minute
video clip which includes four test sequences. The resolution
of the video is 1280 × 760 pixels. Testing is done by the
user watching short sequences of moving ground truth points.
Next, we train with a long sequence of moving gaze points
and test with the same sequence as ground truth. We build 15
dimensional eye features by dividing gray scale eye images
into 3 × 5 cells and averaging them. The methods used in
[9, 10] are implemented for comparison in our experiments.

4.1. Calibration-free gaze estimation experiment

A user watches a 5 minute video clip for calibration. A few
examples are shown in the 1st column of Fig. 3. For testing,
the user watches short sequences of moving gaze points. The
moving gaze points are used as ground truth gaze points for
testing. The estimation error in degrees is shown in Table 1.

In Fig. 3, the 1st column shows input frames along with
eye images and ground truth gaze point (yellow). The 2nd and
3rd columns show resultant probability maps and gaze points
(red) from our clustering method and [9, 10] respectively. Our
method shows accurate gaze point estimation whereas [9, 10]
shows significant deviation.



Fig. 3. Eyes and resultant probability maps of both methods.

Test sequence Sugano et al. [9, 10] Proposed
Test# 1 4.42 2.04
Test# 2 4.25 1.19
Test# 3 5.33 3.16
Test# 4 4.98 3.51
Average 4.78 2.60

Table 1. Calibration-free gaze estimation error (in degrees).

4.2. Gaze trajectory estimation experiment

A user watches a long sequence of moving points. The same
sequence is used as ground truth gaze points. This experiment
removes all factors that may affect the gaze estimation qual-
ity except for the clustering (saliency aggregation) methods.
Table 2. shows the estimation error in degrees.

Sugano et al. [9, 10] Proposed
Error (degrees) 1.58 0.95

Table 2. Gaze trajectory estimation error (in degrees).

Fig. 4 shows the gaze trajectory estimation results. For [9,
10], due to a hard clustering method, the input data holds bi-
ased information and thus produces results shown in Fig. 4(a).
Notice that it has larger fluctuations and bias along the trajec-
tories. In contrasts, our method reduces fluctuation and bias
through a soft clustering method with GMM. This method is
also in consensus with the noisy observation model described
in (10) which leads to further fluctuation reduction. Due to
these improvements we can observe an improved result in
Fig. 4(b).

5. CONCLUSION

In this work, we propose a calibration-free gaze estimation
by saliency aggregation according to an adaptive GMM-based
clustering. This soft clustering method reduces bias and im-
proves the overall estimation quality. In addition, it is in con-
sensus with the noisy observation model of GP. This may be
extended to driver safety applications involving front view
saliency maps as a future work. For this extension, we must
establish a real-time free head pose gaze tracking system.
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Fig. 4. Display of gaze trajectory estimation (red) and ground
truth trajectory (blue) results trained by (a) Sugano et al. [9,
10] method and (b) proposed method.

Overall, with this theoretical approach, the experimental re-
sults show improvement in gaze estimation accuracy.
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