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Figure 1. We visualize calibration processes of three different camera parameters using our method. Our method calibrates extrinsic

camera parameter (a), intrinsic camera parameters (b), non-linear camera model noise (c).

Abstract
In this work, we propose a camera self-calibration algo-

rithm for generic cameras with arbitrary non-linear distor-
tions. We jointly learn the geometry of the scene and the ac-
curate camera parameters without any calibration objects.
Our camera model consists of a pinhole model, a fourth or-
der radial distortion, and a generic noise model that can
learn arbitrary non-linear camera distortions. While tradi-
tional self-calibration algorithms mostly rely on geometric
constraints, we additionally incorporate photometric con-
sistency. This requires learning the geometry of the scene,
and we use Neural Radiance Fields (NeRF). We also pro-
pose a new geometric loss function, viz., projected ray dis-
tance loss, to incorporate geometric consistency for com-
plex non-linear camera models. We validate our approach
on standard real image datasets and demonstrate that our
model can learn the camera intrinsics and extrinsics (pose)
from scratch without COLMAP initialization. Also, we
show that learning accurate camera models in a differen-
tiable manner allows us to improve PSNR over baselines.
Our module is an easy-to-use plugin that can be applied to
NeRF variants to improve performance. The code and data
are currently available at https://github.com/POSTECH-
CVLab/SCNeRF

1. Introduction
Camera calibration is one of the crucial steps in com-

puter vision. Through this process, we learn how the incom-

ing rays map to pixels and thus connect the images to the

physical world. Thus, it is a fundamental step in many ap-

plications such as autonomous driving, robotics, augmented

reality, and many more.

Camera calibration is typically done by placing calibra-

tion objects (e.g., a checkerboard pattern) in the scene and

estimating the camera parameters using the known geome-

try of the calibration objects. However, in many cases, cal-

ibration objects are not readily available and can interfere

with the perception tasks when cameras are deployed in the

wild. Thus, calibrating without any external objects, or self-

calibration, has been an important research topic; first pro-

posed in Faugeras et al. [4]. The paper has spurred many

follow-ups, some of which propose to globally optimize or

embed constraints into the self-calibration optimization pro-

cess [14, 24, 1, 2].

Although there has been much progress in developing

self-calibration algorithms, all these methods have limita-

tions: 1) the camera model used in self-calibration is a sim-

ple linear pinhole camera model. This camera-model design

cannot incorporate generic non-linear camera noise that is

prevalent in all commodity cameras resulting in less accu-

rate camera calibration. 2) self-calibration algorithms use

only a sparse set of image correspondences, and direct pho-

tometric consistency has not been used for self-calibration.

3) they use correspondences from a non-differentiable pro-

cess and do not improve the 3D geometry of the objects,

which could improve the camera model. Let us discuss each

limitation in detail.

First, a linear pinhole camera model can be formulated
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as Kx where K ∈ R
3×3 and x is a homogeneous 3D coor-

dinate. This linear model can simplify a camera model and

computation, but real lenses have complex non-linear dis-

tortions which allow capturing accurate mapping between

the real world and images [5, 15, 20, 18]. However, tra-

ditional self-calibration algorithms assume linear camera

models for computational efficiency at the cost of accuracy.

Second, conventional self-calibration methods solely

rely on the geometric loss or constraints based on the epipo-

lar geometry, such as Kruppa’s method [9, 7, 11] that only

uses a set of sparse correspondences extracted from a non-

differentiable process. This could lead to diverging results

with extreme sensitivity to noise when a scene does not

have enough interest points. On the other hand, photomet-

ric consistency is a physically-based constraint that forces

the same 3D point to have the same color in all valid view-

points. It can create a large number of physically-based con-

straints to learn accurate camera parameters.

Lastly, conventional self-calibration methods use an off-

the-shelf non-differentiable feature matching algorithm and

do not improve or learn the geometry. It is well known that

the better we know the geometry of the scene, the more ac-

curate the camera model gets. This fact is essential since

the geometry of the scene is the sole source of input for

self-calibration.

In this work, we propose a self-calibration algorithm for

generic camera models that end-to-end learn parameters for

the basic pinhole model and radial distortion and non-linear

camera noise. For this, our algorithm jointly learns geome-

try together with a unified end-to-end differentiable frame-

work that allows better geometry to improve camera param-

eters. In particular, we use the implicit volumetric represen-

tation or Neural Radiance Fields [13] for the differentiable

scene geometry representation.

We also propose a geometric consistency designed for

our camera model and train the system together with the

photometric consistency for self-calibration, which pro-

vides a large set of constraints. The novel geometric consis-

tency forces rays from corresponding points on images to

be close to each other, which overcomes the pinhole cam-

era assumption in the conventional geometric losses derived

from Kruppa’s method [9, 7, 11] for self-calibration [24].

Experimentally, we show that our models can learn cam-

era parameters, including intrinsics and extrinsics, without

the standard COLMAP initialization. Also, when the ini-

tialization values for these camera parameters are given, we

fine-tune the camera parameters accurately, which improves

the underlying geometry and novel view synthesis. We test

our model on fish-eye images with COLMAP learned cam-

era radial distortion parameters to analyze the distortion

model and show that our model outperforms the baselines

by a significant margin. In addition, we show that our non-

linear camera model is modular and can be applied to NeRF

variants such as NeRF [23] and NeRF++ [25].

2. Related Work
Camera Distortion Model. Traditional 3D vision tasks

often assume that the camera model is a simple pinhole

model. With the development of camera models, vari-

ous camera models have been introduced, including fish-

eye models, per-pixel generic models. Although per-pixel

generic models are more expressive, they are difficult to

optimize. Schops et al. [19] propose a model locating be-

tween 12 parameters and per-pixel generic models. They

have shown the proposed model has less reprojection error

than other camera models. Strum and Srikumar [20] pro-

pose several methods that show how to calibrate a general

imaging model, where structures are known, but viewpoints

are unknown. The proposed methods allow learning central

cameras without using any distortion model. Grossberg and

Nayar [5] propose a general imaging model that uses vir-

tual sensing elements that describes the mapping between

incoming ray and pixel. They also propose a calibration

method that finds parameters of virtual sensing elements

and shows that the method can be applied to any imaging

system. Ramalingam and Sturm [15] interpret the camera

model as a function that maps pixel to a 3D ray. With this

interpretation, they model various cameras, such as central

cameras or axial cameras.

Camera auto-calibration is the process of estimating cam-

era parameters from a set of uncalibrated images and cam-

eras without using external calibration objects in the scene,

such as checkerboard patterns. Zeller et al. [24] propose a

self-calibration method that adopts the Kruppa equation to

self-calibrate the camera parameters in a video sequence.

Pollefeys et al. [14] propose a stratified method for calibra-

tion using modulus constraints. Chandraker et al. [1] pro-

pose a self-calibration algorithm that incorporates the rank

and positive semi-definite constraints into the optimization.

Chandraker et al. [2] incorporate the branch and bound

method for the globally optimal stratified self-calibration

algorithm. Ha et al. [6] adopt a loss, which implicitly cal-

ibrates the camera models using the correspondences be-

tween image pairs to produce a high-quality depth map from

uncalibrated small motion clips. Engel et al. [3] propose a

novel approach to calibrate the response function and the

non-parametric vignetting function to generate a more ac-

curate tracking model.

Novel View Synthesis. Neural Radiance Fields [13] syn-

thesize novel views by learning volumetric scene function

with multi-layer perceptron. Several improvements on Neu-

ral Radiance Field have been proposed. Zhang et al. [25]

improve the original NeRF model by discriminating back-

ground and foreground. Liu et al. [10] propose a sparse

voxel field approach that skips ray marching of the vox-



els containing no relevant contents, enabling efficient and

more precise rendering. Yariv et al. [21] synthesize novel

views by reconstructing the 3D surface as a level set of

signed distance functions with a neural network. However,

surface-based rendering requires a binary mask distinguish-

ing background and foreground. Moreover, it is not suitable

to reconstruct real scenes since the model also reconstructs

the background surface. Yu et al. [23] propose a learning

framework to learn scene information using few images.

Yen et al. [22] address an inverse problem of NeRF, which

estimates poses of observed images. They’ve used test im-

ages to predict the poses of the test images and re-trained

the NeRF network with the predicted poses for better ren-

dering quality.

3. Preliminary
We use the neural radiance fields to learn the 3D scene

geometry, which is crucial for learning the photometric loss

for self-calibration. In this section, we briefly cover the

definitions of the neural radiance fields: NeRF [13] and

NeRF++ [10].

Implicit Volumetric Representation. Learning dense 3D

geometry of a scene using an implicit representation re-

cently gained significant attention due to its robustness and

accuracy. It learns two implicit representations: trans-

parency α(x) and color c(x,v) where x ∈ R
3 is the 3D po-

sition in the world coordinate, rd ∈ {rd|rd ∈ R
3, |rd| = 1}

is a normal 3-vector representing the direction of a ray

r(t) = ro + trd.

The color value C of a ray can be represented as an in-

tegral of all colors weighted by the opaqueness along a ray,

or can be approximated as the weighted sum of colors at N
points along a ray.

Ĉ(r) ≈
N∑
i

⎛
⎝i−1∏

j=1

α(r(tj),Δj)

⎞
⎠ (1−α(ti,Δi))c(r(ti),v)

(1)

where Δi = ti+1 − ti. Thus, the accuracy of the method

depends highly on the number of samples as well as how

we sample points.

Background Representation with Inverse Depth. The

volumetric rendering used in NeRF is effective and robust if

the space the network to capture is bounded. However, on

the outdoor scene, the volume of the space is unbounded,

and the number of samples required to capture the space

increases proportionally, often computationally prohibitive.

Instead, Zhang et al. [25] propose NeRF++ to model fore-

ground and background with separate implicit networks

while the background ray is reparametrized to have bounded

volume. The network architecture of [25] can be succinctly

formulated as two implicit networks: one for foreground

and one for background. In this paper, we will explore both

NeRF and NeRF++ to analyze our camera self-calibration

model.

4. Differentiable Self-Calibrating Cameras
In this section, we provide the definition of our differ-

entiable camera model that combines the pinhole camera

model, radial distortion, and a generic non-linear camera

distortion for self-calibration [18]. Mathematically, a cam-

era model is a mapping p = π(r) that defines a 3D ray r to a

2D coordinate p in the image plane. In this work, we focus

on the unprojection function, or a ray, r(p) = π−1(p) as the

geometry learning and our projected ray distance only re-

quires the unprojection of a pixel to a ray. Thus, we use the

term camera model and camera unprojection interchange-

ably, and we represent a ray r(p) of a pixel p as a pair of

3-vectors: a direction vector rd and an offset or a ray origin

vector ro.

Our camera unprojection process consists of two compo-

nents: unprojection of pixels using a differentiable pinhole

camera model and generic non-linear ray distortions. We

first mathematically define each component.

4.1. Differentiable Pinhole Camera Rays

The first component of our differentiable camera unpro-

jection is based on the pinhole camera model, which maps a

4-vector homogeneous coordinate in 3D space to a 3-vector

in the image plane.

First, we decompose the camera intrinsics into the ini-

tialization K0 and the residual parameter matrix ΔK. This

is due to the highly non-convex nature of the intrinsics ma-

trix that has a lot of local minima. Thus, the final intrinsics

is the sum of these K = K0+ΔK ∈ R
3×3 where the norm

of ΔK is bounded. The matrix

K =

⎡
⎣fx +Δfx 0 cx +Δcx

0 fy +Δfy cy +Δcy
0 0 1

⎤
⎦ (2)

Note that we will denote c = [cx, cy] and f = [fx, fy]
for simplicity. Similarly, we use the extrinsics initial values

R0 and t0 and residual parameters to represent the cam-

era rotation R and translation t. However, directly learn-

ing the rotation offset for each element of a rotation matrix

would break the orthogonality of the rotation matrix. Thus,

we adopt the 6-vector representation [26] which uses unnor-

malized first two columns of a rotation matrix to represent

a 3D rotation:

f

⎛
⎝
⎡
⎣ | |
a1 a2
| |

⎤
⎦
⎞
⎠ =

⎡
⎣ | | |
b1 b2 b3

| | |

⎤
⎦ , (3)

where b1,b2,b3 ∈ R
3 are b1 = N(a1), b2 = N(a2 −

(b1 · a2)b1), and b3 = b1 × b2, and N(·) denotes L2



norm. Final rotation and translation are

R = f(a0 +Δa), t = t0 +Δt.

We use K to unproject pixels to rays. The ray from the in-

trinsics is r̃(p)d = K−1p and r̃o = 0 where ·̃ denotes a

vector in the camera coordinate system. We use the extrin-

sics R, t to convert these into vectors in the world coordi-

nate:

rd = RK−1p, ro = t. (4)

Since these ray parameters (rd, ro) are functions of intrin-

sics and extrinsics residuals (Δf ,Δc,Δa,Δt), we can pass

gradients from the rays to the residuals to optimize the pa-

rameters. Note that we do not optimize K0, R0, t0.

Cameras are made of a set of circular lenses which warp

rays to the center. Thus, distortions at the edge of the lenses

create circular distortion patterns. We extend our model

to incorporate such radial distortions. Following the radial

fisheye model in COLMAP [16], we adopt the fourth order

radial distortion model which drops rare higher order dis-

tortions, i.e. k = (k1 + zk1
, k2 + zk2

).

n = ((px − cx)/cx, (py − cy)/cy, 1) (5)

d = (1 + k1n
2
x + k2n

4
x, 1 + k1n

2
y + k2n

4
y) (6)

p′ = (pxdx,pydy, 1) (7)

rd = RK−1p′, ro = t (8)

Similar to other camera parameters, we learn these camera

parameters using photometric errors.

4.2. Generic Non-Linear Ray Distortion

We model some distortions that are easy to express math-

ematically. However, complex optical abberations in real

lenses cannot be modeled using a parametric camera. For

such noise, we use non-linear model following Grossberg et
al. [5, 18] to use local raxel parameters to capture generic

non-linear aberration. Specifically, we use local ray param-

eter residuals zd = Δrd(p), zo = Δro(p) where p is the

image coordinate.

r′d = rd + zd, r′o = ro + zo.

We use bilinear interpolation to locally extract continuous

ray distortion parameters

zd(p) =

�px�+1∑
x=�px�

�py�+1∑
y=�py�

(1− |x− px|)(1− |y − py|)

zd[x, y]zd[x, y]. (9)

zd[x, y] indicates the ray direction offset at a discrete 2D

coordinate (x, y). We learn the parameters of zd at discrete

locations only. Similarly, we can define zo(p) as bilinear

interpolation of zo[x, y]. The final ray direction, ray offset

generation can be summarized as Fig. 2.

Radial Distortion

Figure 2. Computation graph of ro, rd from camera parameters

and camera parameter noise.

5. Geometric and Photometric Consistency

Our camera model incorporates the generic non-linear

distortions that increase the number of camera parameters

drastically. In this work, we proposed using both geomet-

ric and photometric consistencies for self-calibration, which

allows more accurate camera parameter calibration as these

consistencies provide additional constraints. We discuss

each of the constraints in this section.

5.1. Geom. Consistency: Projected Ray Distance

The generic camera model poses a new challenge defin-

ing a geometric loss. In most traditional work, the geomet-

ric loss is defined as an epipolar constraint that measures

the distance between an epipolar line and the correspond-

ing point, or reprojection error where a 3D point for a cor-

respondence is defined first which is then projected to an

image plane to measure the distance between the projection

and the correspondence. However, these methods have few

limitations when we use our generic noise model.

First, the epipolar distance assumes a perfect pinhole

camera, which breaks in our setup. Second, the 3D repro-

jection error requires creating a 3D point cloud reconstruc-

tion using a non-differentiable process, and the camera pa-

rameters are learned indirectly from the 3D reconstruction.

In this work, rather than requiring a 3D reconstruction to

compute an indirect loss like the reprojection error, we pro-

pose the projected ray distance loss that directly measures

the discrepancy between rays. Let (pA ↔ pB) be a cor-

respondence on camera 1 and 2 respectively. When all the

camera parameters are calibrated, the ray rA and rB should

intersect at the 3D point that generated point pA and pB .

However, when there’s a misalignment due to an error in

camera parameters, we can measure the deviation by com-

puting the shortest distance between corresponding rays.

Let a point on line A be xA(tA) = ro,A + tArd,A and

a point on line B be xB(tB) = ro,B + tBrd,B . A distance



Image A Image B

Figure 3. An illustration of the proposed Projected Ray Distance

(PRD). PRD measures the length of the projection of the shorted

line segment between two rays.

between the line A and a point on the line B is

d =
|(ro,B + tBrd,B − ro,A)× rA,d|

rA,d · rA,d
(10)

If we solve for dd2

dtB
|t̂B = 0, we get

t̂B =
(rA,o − rB,o)× rA,d · (rA,d × rB,d)

(rA,d × rB,d)2
. (11)

We substitute t̂B to the line 2 and can get the x̂B = xB(t̂B).
Similarly, we can get x̂A. For simplicity, we will denote x·
as x̂· since we will focus primarily on the final solution. The

distance between two points d̂ = xAxB is

d̂ =
|(rA,o − rB,o) · (rA,d × rB,d)|

|rA,d × rB,d| (12)

However, this distance is not normalized for correspon-

dences. Given the same camera distortions, a correspon-

dence for a point farther from the cameras would have a

larger deviation, while a correspondence for a point closer

to the cameras would have a smaller deviation. Thus, we

need to normalize the scale of the distance. Thus, we project

the points xA,xB to image planes IA, IB and compute dis-

tance on the image planes, rather than directly using the

distance in the 3D space.

dπ =
‖πA(xB)− pA‖+ ‖πB(xA)− pB‖

2
(13)

where π(·) is a projection function and equalizes the contri-

bution from each correspondence irrespective of their dis-

tance from the cameras. We visualize the projected ray dis-

tance in Fig. 3.

This projected ray distance is a novel geometric loss dif-

ferent from the epipolar distance or the reprojection error.

The epipolar distance is defined only for linear pinhole cam-

eras and cannot model the non-linear camera distortions.

On the other hand, the reprojection error requires extracting

a 3D reconstruction in a non-differentiable preprocessing

stage and optimizes the camera parameters via optimizing

the 3D reconstruction. Our projected ray distance does not

require the intermediate 3D reconstruction and can model

the non-linear camera distortions.

5.2. Chirality Check

When the camera distortion is large and the baseline

between cameras is small, the shortest line between rays

from a correspondence might be located behind the cam-

eras. Minimizing such invalid ray distance would result in

suboptimal camera parameters. Thus, we check whether the

points are behind a camera by computing the z-depth along

with the camera rays. Mathematically,

RAxB [z] > 0, RBxA[z] > 0 (14)

where x[z] indicates the z component of a vector. Finally,

we only average valid projected ray distances for all corre-

spondences to compute the geometric loss.

5.3. Photometric Consistency

Unlike geometric consistency, photometric consistency

requires reconstructing the 3D geometry because the color

of a 3D point is valid only if it is visible from the cur-

rent perspective. In our work, we use a neural radiance

field [13] to reconstruct the 3D occupancy and color. This

implicit representation is differentiable through both posi-

tion and color value and allows us to capture the visible sur-

face through volumetric rendering. Specifically, during the

rendering process, a ray is parametrized using K0, R0, t0 as

well as ΔK,Δa,Δt as well as zo[·], zd[·] as visualized in

Fig. 2. We differentiate the following energy function with

respect to the learnable camera parameters to optimize our

self-calibration model.

L =
∑
p∈I

||C(p)− Ĉ(r(p)||22 (15)

Here, p is a pixel coordinate, and I is a set of pixel coor-

dinates in an image. Ĉ(r) is the output of the volumetric

rendering using the ray r, which corresponds to the pixel p.

C(p) is the ground truth color. Thus, the gradient for the

intrinsics is

∂L

∂ΔK
=

∂L

∂r

(
∂r

∂rd

∂rd
∂ΔK

+
∂r

∂ro

∂ro
∂ΔK

+
∂L

∂rd

rd
∂Δk

)
.

Similarly, we can define gradients for the rest of the param-

eters Δa,Δt as well as zo[·], zd[·] and calibrate cameras.

6. Optimizing Geometry and Camera
To optimize geometry and camera parameters, we learn

the neural radiance field and the camera model jointly.



However, it is impossible to learn accurate camera parame-

ters when the geometry is unknown or too coarse for self-

calibration. Thus, we sequentially learn parameters: geom-

etry and a linear camera model first and complex camera

model parameters.

6.1. Curriculum Learning

The camera parameters determine the positions and di-

rections of the rays for NeRF learning, and unstable values

often result in divergence or sub-optimal results. Thus, we

add a subset of learning parameters to the optimization pro-

cess to jointly reduce the complexity of learning cameras

and geometry. First, we learn the NeRF networks while ini-

tializing the camera focal lengths and focal centers to half

the image width and height. Learning coarse geometry first

is crucial since it initializes the networks to a more favor-

able local optimum for learning better camera parameters.

Next, we sequentially add camera parameters for the linear

camera model, radial distortion, and nonlinear noise of ray

direction, ray origin to the learning. We learn simpler cam-

era models first to reduce overfitting and faster training.

6.2. Joint Optimization

We present the final learning algorithm in Alg. 1. The

get params function returns a set of parameters for the

curriculum learning which progressively adds complexity

to the camera model. Next, we train the model with the pro-

jected ray distance by selecting a target image at random

with sufficient correspondences. Heuristically, we found

selecting images within maximum 30°from the source view

gives an optimal result.

Algorithm 1 Joint Optimization of Color Consistency Loss

and Ray Distance Loss using Curriculum Learning

Initialize NeRF parameter Θ
Initialize camera parameter zK , zR|t, zray o, zray d, zk
Learnable Parameters S = {Θ}
for iter=1,2,... do

S’ = get params(iter) � Curriculum learning

rd, ro ← camera model(K, z) Sec. 4

L ← volumetric rendering(rd, ro,Θ) Eq. 1

if iter % n == 0 and iter >= nprd then
I ′ ← random(RI , tI , I)

C ← Correspondence(I , I ′)
Lprd ← Projected Ray Distance(C) Sec. 5.1

L ← L+ λLprd

end if
for s ∈ S ′ do

s ← s+∇sL
end for

end for

7. Experiment

7.1. Dataset

We use three datasets to analyze different aspects of our

model. Two outdoor scenes, Mildenhall et al. [12] and

Zhang et al. [8], are captured with a pinhole camera lens.

LLFF [12] and Tanks and Temples dataset [8] are composed

of 8 and 4 scenes, respectively, where their camera parame-

ters are estimated using COLMAP [16].

Since these datasets are captured using professional cam-

eras with small lens distortions, we collected a few scenes

using a fish-eye camera to examine the end-to-end learning

capacity of our model. We acquire the camera information

with COLMAP.

7.2. Self-Calibration

We train our model from scratch to demonstrate that our

model can self-calibrate the camera information. We ini-

tialize all the rotation matrices, the translation vectors, and

focal lengths to an identity matrix, zero vector, and height

and width of the captured images. Table 1 reports the quali-

ties of the rendered images in the training set. Although our

model does not adopt calibrated camera information, our

model shows a reliable rendering performance. Moreover,

for some scenes, our model outperforms NeRF, trained with

COLMAP [16] camera information. We have visualized the

rendered images in Figure 7.

Table 1. Comparison of NeRF and our model when no calibrated

camera information is given. ”nan” denotes the case when no inlier

matches are acquired due to the wrong camera information.

Scene Model PSNR(↑) / SSIM(↑) / LPIPS(↓) / PRD(↓)

Flower
NeRF 13.8 / 0.302 / 0.716 / nan

ours 33.2 / 0.945 / 0.060 / 0.911

Fortress
NeRF 16.3 / 0.524 / 0.445 / nan

ours 35.7 / 0.945 / 0.069 / 0.833

Leaves
NeRF 13.01 / 0.180 / 0.687 / nan

ours 25.75 / 0.878 / 0.146 / 0.885

Trex
NeRF 15.70 / 0.409 / 0.575 / nan

ours 31.75 / 0.954 / 0.104 / 1.002

7.3. Improvement over NeRF

We have observed that our model shows better rendering

qualities than NeRF when COLMAP initializes the camera

information. We compare the rendering qualities of NeRF

and our model in Table 2. Our model consistently shows

better rendering qualities than the original NeRF. In addi-

tion, our model indicates much less projected ray distance,

indicating that our model improves the camera informa-

tion. We visualize the non-linear distortion that our camera

model learned in Fig. 4.



Table 2. Comparison of NeRF and our model when the camera pa-

rameters are initialized with COLMAP [16] in LLFF [12] dataset.

Scene Model PSNR(↑) / SSIM(↑) / LPIPS(↓) / PRD(↓)

Flower
NeRF 32.2 / 0.937 / 0.067 / 2.440

ours 33.3 / 0.946 / 0.058 / 0.895

Fortress
NeRF 35.3 / 0.947 / 0.056 / 2.475

ours 36.6 / 0.960 / 0.049 / 0.724

Leaves
NeRF 25.3 / 0.874 / 0.149 / 2.709

ours 25.9 / 0.886 / 0.136 / 0.854

Trex
NeRF 31.4 / 0.955 / 0.099 / 2.368

ours 32.0 / 0.959 / 0.095 / 0.953

Figure 4. Visualization of the captured non-linear distortions. The

second row shows learned ray offsets.

7.4. Improvement over NeRF++

Since our model is designed to work on variants of

NeRF, we have substituted the NeRF architecture to the

NeRF++ [25] architecture. We then compare NeRF++ and

our model in tanks and temples [8] dataset. Table 3 reports

rendering qualities and projected ray distance loss in the

training set. Our model results in better rendering qualities

and much less train projected ray distance. The qualitative

results are visualized in Figure 6.

Table 3. Rendering qualities of NeRF++ and our model in tanks

and temples [8] dataset.

Scene Model PSNR(↑) / SSIM(↑) / LPIPS(↓) / PRD(↓)

M60
NeRF++ 25.62 / 0.772 / 0.395 / 1.335

ours 26.99 / 0.805 / 0.359 / 1.326

Playground
NeRF++ 25.14 / 0.681 / 0.434 / 1.302

ours 26.17 / 0.715 / 0.396 / 1.299

Train
NeRF++ 21.80 / 0.619 / 0.479 / 1.261

ours 22.71 / 0.651 / 0.450 / 1.255

Truck
NeRF++ 24.13 / 0.730 / 0.392 / 1.248

ours 25.22 / 0.763 / 0.352 / 1.240

7.5. Fish-eye Lens Reconstruction

We test our model on images with high distortion to con-

trast the importance of end-to-end learning of camera pa-

rameters. Conventional feature matching algorithms fail

to acquire reliable correspondences for these scenes, so

we skip the projected ray distance loss from our curricu-

lum training. Table 4 reports the rendering qualities of our

learned model and the baseline NeRF++. We trained the

baseline and our model from the COLMAP initialization

globe cube

Figure 5. Images captured using a fish-eye camera.

Table 4. Rendering qualities of scenes captured on fish-eye cam-

eras. ”RD” denotes the modified implementation to reflect radial

distortions.

Scene Model PSNR(↑) / SSIM(↑) / LPIPS(↓)

Globe
NeRF++[RD] 21.97 / 0.572 / 0.659

ours 23.76 / 0.598 / 0.633

Cube
NeRF++[RD] 21.30 / 0.574 / 0.643

ours 23.17 / 0.605 / 0.616

Table 5. Ablation studies about components of our model. ”IE”,

”OD”, and ”PRD” denote learnable intrinsic and extrinsic param-

eters, learnable non-linear distortion, and projected ray distance

loss, respectively.

Scene PSNR(↑) / SSIM(↑) / LPIPS(↓) / PRD(↓)

Fortress
NeRF 30.5 / 0.866 / 0.096 / 0.856

+ IE 35.3 / 0.948 / 0.058 / 0.729

+ IE + OD 36.4 / 0.957 / 0.051 / 0.724
+ IE + OD + PRD 36.6 / 0.96 / 0.049 / 0.724

Room
NeRF 31.5 / 0.950 / 0.096 / 0.883

+ IE 38.3 / 0.978 / 0.070 / 0.806

+ IE + OD 39.4 / 0.980 / 0.065 / 0.805

+ IE + OD + PRD 39.7 / 0.981 / 0.063 / 0.805

with a radial distortion model that provides fish-eye cam-

era parameters. Since the NeRF++ camera model does not

incorporate the radial distortion, we modify the implemen-

tation to incorporate the fish-eye distortion in ray computa-

tion.

7.6. Ablation Study

To check the effects of the proposed models, we con-

duct an ablation study. We check the performance for each

phase in curriculum learning. We train 200K iterations for

each phase. From this experiment, we have observed that

extending our model is more potential in rendering clearer

images. However, for some scenes, adopting projected ray

distance increases the overall projected ray distance. Table

5 reports the results of the ablation study and Figure 8 visu-

alizes the errors.

8. Conclusion
We propose a self-calibration algorithm that learns ge-

ometry and camera parameters jointly end-to-end. The

camera model consists of a pinhole model, radial distor-

tion, and non-linear distortion, which capture real noises in

lenses. We also propose projected ray distance to improve

accuracy, which allows our model to learn fine-grained cor-
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Figure 6. Experiments using tanks and temples [8] dataset. For each scene, the zoom-in of rendered images and error maps (0 to 0.1 pixel

intensity range) are presented, and they are obtained from NeRF++ [25] (first row) and our model (second row). For each subfigure, PSNR

is shown on the upper left.

(a) NeRF [w/o COLMAP] (c) ours [w/o COLMAP](b) NeRF [w/ COLMAP] (e) Target Image(d) ours [w/ COLMAP]

13.04 25.1125.99 26.51

15.84 31.9131.55 31.71

13.12 32.2532.31 33.44

12.48 25.7524.70 25.64

0

0.2

Figure 7. Comparison of NeRF [13] and our approach using LLFF [12] dataset. The first two columns of images show results of NeRF

without or with intrinsic and extrinsic camera parameters. We use COLMAP [17] for the camera initialization. The third and fourth

columns show rendered images using our approach with the same configuration. Our self-calibration approach shows consistent results

regardless of using the camera prior. For each subfigure, PSNR is shown on the upper left.

respondences. We show that our model learns geometry

and camera parameters from scratch when the poses are not

given, and our model improves both NeRF and NeRF++ to

be more robust when camera poses are given.
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Figure 8. Visualization of rendered images for each configurations

shown in Table 5. The green, blue, yellow, and purple box are the

error map of NeRF, NeRF + IE, NeRF + IE + OD, and NeRF + IE

+ OD + PRD, respectively.
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