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Abstract—We propose a robust uncalibrated multiview photometric stereo method for high quality 3D shape reconstruction. In our
method, a coarse initial 3D mesh obtained using a multiview stereo method is projected onto a 2D planar domain using a planar mesh
parameterization technique. We describe methods for surface normal estimation that work in the parameterized 2D space that jointly
incorporates all geometric and photometric cues from multiple viewpoints. Using an estimated surface normal map, a refined 3D mesh
is then recovered by computing an optimal displacement map in the same 2D planar domain. Our method avoids the need of merging
view-dependent surface normal maps that is often required in conventional methods. We conduct evaluation on various real-world
objects containing surfaces with specular reflections, multiple albedos, and complex topologies in both controlled and uncontrolled
settings and demonstrate that accurate 3D meshes with fine geometric details can be recovered by our method.

Index Terms—Multiview Photometric Stereo, Planar Mesh Parametrization.
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1 INTRODUCTION

A CCURATE 3D shape reconstruction from images is of
broad interest in computer vision. Recent advances

in geometric techniques including structure from motion
(SfM) [19] and multiview stereo (MVS) [28] have enabled
accurate 3D reconstruction of challenging scenes. These
methods generally rely on recovering dense pixel correspon-
dences in images recorded from multiple viewpoints and
estimate depth maps, from which a 3D shape of the scene is
determined. On the other hand, photometric methods, such
as shape-from-shading [14] and photometric stereo [36],
use shading cues to estimate per-pixel surface normals.
Such methods avoid the difficulty of inferring dense pixel
correspondence but only recover the shape information in
the form of surface normals. These two types of approaches
have complementary strengths and have been combined in
prior work on 3D reconstruction [8], [11], [21], [24], [37], [38],
[40], [41].

In this paper, we present an efficient and robust multi-
view photometric stereo method that naturally combines all
available geometric and photometric cues for accurate 3D
scene reconstruction. The input to our method is a set of
images captured from multiple viewpoints under varying
light sources for each viewpoint. Our method first recovers
a coarse 3D mesh of a scene using existing SfM and MVS
methods, which serves as an initialization for the proposed
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method. The key idea of our method is to transform the
initial 3D mesh into a parameterized 2D space using a dis-
tortion minimizing mesh parameterization technique [29],
and estimate a surface normal of each point using all the
observations of the scene obtained from varying viewpoints
under different lightings. Finally, the initial coarse 3D shape
is refined by estimating an optimal displacement map rep-
resented in the same 2D domain. Camera poses and light
source directions are both automatically calibrated in our
method.

For surface normal estimation, we present two methods.
The first method operates on dense blocks of an observation
matrix formed by stacking pixel intensities from the input
images captured from multiple viewpoints under different
lightings. This method can efficiently deal with missing
elements in the observation matrix, which arise due to
the lack of visibility of local surface patches from certain
viewpoints, given that the number of missing elements is
not significant. For handling more challenging cases, where
the number of missing elements is significant or the number
of observations is small, we develop the second method that
is based on a low-rank matrix factorization approach. The
second method shows greater robustness against a higher
amount of missing data at the cost of more computation.

Once we obtain the surface normal estimates, subse-
quently we refine the initial coarse 3D mesh based on
the surface normal. The problem of mesh refinement is
formulated as recovering the optimal displacement map
in the same parameterized 2D space. The estimated 2D
displacement map encodes fine geometric details of a final
3D shape. Unlike prior method that merges view-dependent
normal maps [24], our method performs both surface nor-
mal estimation and shape refinement in a unified manner in
the parameterized 2D space.

The proposed method has a few advantages over ex-
isting techniques. First, with our method, multiview pho-
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Fig. 1. Overview of our method. Structure-from-motion is used to calibrate cameras and multiview stereo is used to recover a coarse mesh. After
parameterizing the coarse mesh, multiview photometric stereo and mesh refinement are performed in a parameterized 2D space.

TABLE 1
Comparison of our method with prior techniques [11], [24]. We use a different 3D shape representation, which is key to the high accuracy and

efficiency of the normal map estimation and mesh refinement steps in our method.

Base mesh Calibration 3D shape representation Optimize by Normals estimated in
Nehab et al. [24] 3D scanner Manual Regular 3D mesh Mesh refinement Individual image

Hernandez et al. [11] Visual hull Auto Regular 3D mesh Mesh refinement Face normals of mesh
Our method SfM+MVS Auto Base mesh+displacement map Displacement map Parameterized 2D space

tometric stereo can be naturally formulated in the 2D do-
main since all the input images captured from multiple
viewpoints under different illumination can be warped into
the same 2D space. In contrast to prior methods, where
surface normals are first estimated independently in each
view and then subsequently merged, our method treats all
the images from multiple viewpoints simultaneously and
avoids the need for post-merging. Second, our method can
easily increase the resolution of the normal and displace-
ment maps in the 2D domain and efficiently recovers a
detailed 3D mesh by leveraging the full resolution of the
input images. Third, since our method performs mesh re-
finement in the 2D space, it requires fewer parameters than
directly working in the original 3D mesh representation.
These advantages make the multiview photometric stereo
problem more tractable.

This paper extends the preliminary version of our
work [27] in a few respects. First, we introduce a robust
matrix factorization-based technique that can handle more
challenging datasets by exploiting the low-rank structure
of the observation matrix. The new method can handle
more general visibility patterns and outliers at the cost of
more computation. We evaluate the original dense block-
based and matrix factorization-based methods under vari-
ous camera-light configurations and objects with different
reflectances, and their individual merits are discussed. We
also show a 3D reconstruction result obtained from a fully
uncontrolled setting, where the target object is manually
rotated and illuminated by a hand-held light source.

2 RELATED WORK

The idea of fusing geometric and photometric cues for
high-quality 3D scanning is gaining attention due to their
complementary strengths; multiview geometric approaches
are getting mature and reliable enough for obtaining coarse
shape information, but the recovered shape suffer from tex-
tureless regions of the scene. On the other hand, photometric
approaches can generally recover fine details by estimating
per-pixel surface normals, while it does not directly provide

a metric depth information. Recent successful 3D recon-
struction methods effectively combine these two types of
approaches.

Nehab et al. [24] propose an efficient method for 2D
depth map refinement using a surface normal map by ad-
justing depth values based on orthogonality between depth
gradients and surface orientations. Zhang et al. [42] ex-
tend their method to better preserve depth discontinuities.
Okatani and Deguchi [26] propose a probabilistic frame-
work for shape refinement using the first-order derivative
of surface normals. Lu et al. [21] use a giga-pixel camera
to estimate ultra high-resolution surface normals via photo-
metric stereo to refine a low-resolution depth map captured
by a structured light. While these methods are effective and
can be used for recovering a full 3D mesh, they require
additional processing for registering and merging multiple
view-dependent depth maps. Instead of refining geometry,
Zhou et al. [44] propagate sparse points that are recovered
by SfM according to iso-depth contour segments derived
from intensity profiles. To acquire the reliable intensity
profiles, they capture dozens of images at each viewpoint.
Their method does not require an optimization step for
fusing photometric/geometric information and works well
for non-Lambertian objects.

For 3D mesh refinement, Nehab et al. [24] state that
their 2D depth refinement method can be extended to
handle a 3D mesh while it is not explicitly shown in the
paper. Lensch et al. [17] introduce a generalized method
for modeling non-Lambertian surfaces using wavelet-based
BRDFs and use it for mesh refinement. Hernandez et al. [11]
propose an effective approach that jointly estimates geom-
etry and per-triangle normal in an unified manner. It can
substantially deform the initial geometry by minimizing a
quadratic energy function. In addition, a robust approach
for self-calibration of light directions is also discussed. Wu et
al. [37] use the spherical harmonics representation to es-
timate global illumination and refine a preliminary mesh
using photometric stereo by minimizing `1 penalties. In
their extended approach [38], geometric details are added
using shape-from-shading under natural lightings. Vlasic et
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al. [34] integrate view-dependent normal maps into partial
meshes, then deform them with thin-plate offsets to improve
the alignment with preserving geometric details. Choe et
al. [3] use near infra-red images of Kinect to refine the
geometry reconstructed via KinectFusion [15].

Table 1 summarizes the similarities and differences
among our approach and the two closely related methods
proposed by Nehab et al. [24] and Hernandez et al. [11].
These 3D mesh refinement methods generally use a high-
resolution mesh in order to attain high frequency details
recovered by photometric methods. Determining the proper
mesh resolution a priori is not straightforward in these
techniques because it depends on the viewpoint and the
image resolution. To work around, these techniques use an
over-sampled mesh resolution that is high enough not to
lose the geometric details. In contrast, our method allows
the mesh resolution to be derived directly from the normal
map resolution and avoids the problem of under-sampling
or over-sampling mesh vertices. In addition, our 2D param-
eterization approach performs mesh refinement efficiently,
where only 1D vertex displacements are optimized rather
than directly updating the 3D vertex coordinates of the
mesh. The parameterized 2D space jointly handles the in-
put images from multiple viewpoints, and it allows us to
apply recent low-rank factorization techniques [2], [25], [39]
because of the increased number of aligned observations.

3 PROPOSED METHOD

This section describes the key elements of the proposed
method. For now, let us assume that all the cameras are cal-
ibrated and the initial base mesh is available. The methods
for auto-calibration and obtaining the initial base mesh are
explained later. After describing the mesh parameterization
scheme, we explain how surface normal estimation and
mesh refinement is performed in the parameterized 2D
space. Figure 1 shows an overview of our approach.

3.1 Mesh Parameterization
In our method, the base triangle mesh, denoted by M, is
mapped to a parameterized 2D space using a piecewise con-
tinuous function fM : R3 → R2. The mapping is referred
to as mesh parameterization [29]. While this process is not
restricted to a particular mesh parameterization method,
in this paper, we use the iso-charts method proposed by
Zhou et al. [43] that minimizes non-uniform distortions
of the original mesh by finding optimal cuts that parti-
tion the mesh into segments. Each connected segment is
mapped by its own mapping function to a single chart in
the parameterized space. We denote the parameterized 2D
space as U , which contains an arbitrary arrangement of the
charts. Using iso-charts, we also obtain a one-to-one inverse
mapping f−1M from a 2D point u = [u, v]T in U to a 3D
point x on the meshM. For maximally benefiting from the
photometric stereo estimates, the resolution of U , or referred
as texture map resolution is set proportional (80%) to the input
image resolution.

3.2 Image Warping
Using the camera calibration and the inverse mapping f−1M ,
we warp input images I to images I ′ in the U coordinates.

Fig. 2. Example of surface normal map and displacement map esti-
mation. (a) Input image. (b) Initial normal map obtained from a base
mesh, in U . (c) Disambiguated normals from photometric stereo in U .
Here, unit 3D vectors have been linearly mapped to RGB. (d) Estimated
displacement map.

Algorithm 1: Image Warping

Input: Image I , camera projection matrix P , meshM
and its face visibility

Output: Warped image I ′
for each pixel u ∈ U do

Find triangle t ∈ U that contains u
Find barycentric coefficients, wt for u in t
Find face f ∈M that maps to t and its vertices {xt}
if f is visible then

x′ ← Barycentric-interpolation({xt}, wt)
I′(u)← I(Px′)

The images are warped using the standard inverse mapping
technique, i.e., we begin with a pixel u in the U coordinates
and determine its corresponding pixel location in the in-
put image I via the inverse mapping function f−1M . Since
f−1M is discrete, we use a piece-wise linear interpolation
to approximate continuous f−1M . Specifically, our method
finds the projected mesh face that encloses pixel u of the U
coordinates and determines 3D position x′ that corresponds
to pixel u using barycentric interpolation [33].

Finally, the intensity of pixel u in I ′ is determined
by mapping the pixel in image I via the 3D scene point
x′. This procedure is summarized in Algorithm 1. We use
kd-trees [23] to accelerate the search for the 2D triangle.
The warping function is computed only once, and it is
applied to multiple images recorded from the viewpoint but
illuminated under varying lighting conditions. During the
image warping, only visible mesh faces are considered, and
z-buffering is used for checking the visibility of faces from
the camera.

3.3 Surface Normal Estimation
One of the key benefits of the distortion minimizing mesh
parameterization scheme [43] is that pixels of the multiview
images are well aligned in the parameterized 2D space with-
out significant error caused by viewpoint variations. Unlike
single-view photometric stereo, in our case, we have more
observations from nearby viewpoints that are reasonably
well aligned using the base mesh geometry. Therefore, the
parameterization allows the images from multiple view-
points under varying lightings to be effectively used for
multiview photometric stereo.

We now describe two methods for estimating surface
normals given warped images I ′; one is an efficient block-
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based method, and the other is a matrix factorization-
based method that is robust against outliers. To simplify
discussions, we begin with assuming a Lambertian image
formation model. We will see later that this assumption can
be relaxed to handle more diverse reflectances. By denoting
the image intensities in the form of an observation matrix
O ∈ Rp×q , where p is the number of valid pixels in U , and
q is the number of images (multiple views × multiple light
directions), the Lambertian image formation model can be
expressed as O = NLT. Here, N ∈ Rp×3 is an albedo-scaled
surface normal matrix, and L ∈ Rq×3 represents a lighting
matrix.

In our case, the observation matrix O has many miss-
ing elements because of the visibility of a scene point
from various viewpoints. To handle this problem, the first
approach finds dense sub-matrices in O and aggregates
individual solutions to obtain a full surface normal map.
It is computationally efficient but susceptible to difficult
visibility patterns and non-Lambertian pixels that break
the dense block structures. The second approach is built
upon robust matrix factorization that can better handle these
challenging cases at the cost of more computation. In the
following, we describe these two techniques; dense block-
based and matrix factorization-based methods, denoted as
Block method and Factorization method, respectively.

3.3.1 Dense Block-based Method
The Block method computes the surface normal N using
subsets of the observations, which form dense block sub-
matrices in O. In general, finding dense sub-matrices OS

from the matrix O is a NP-hard problem. However, if the
columns of O are arranged in the order of image recording,
which is easy to do in our setting, valid intensity observa-
tions usually appear in the consecutive columns of O. The
problem of finding the sub-matrices is, therefore, reduced to
finding maximum cliques in an interval graph. We use the
method proposed by Gupta et al. [6] for finding multiple and
overlapping dense sub-matrices in the original observation
matrix O.

Given a set of sub-matrices {OS}, we apply uncalibrated
photometric stereo [9] to each OS . Each sub-matrix OS can
be factored and approximated by a product of two rank-3
matrices via singular value decomposition (SVD) as

OS = UΣVT ≈ U3Σ3V
T
3 , (1)

where Σ is a diagonal singular value matrix, and U and
V are orthonormal matrices containing singular vectors.
Σ3, U3, and V3 are rank-3 approximations of Σ, U, and
V, respectively. Corresponding surface normal and light
matrices NS and LS can be recovered up to an linear
ambiguity as

OS ≈ U3Σ3V
T
3 = (NSA−1)(ALT

S), (2)

where NS = U3Σ
1
2
3 , LT

S = Σ
1
2
3 VT

3 , and A is a non-singular
3 × 3 matrix that represents a general linear shape-light
ambiguity that exists in uncalibrated photometric stereo.

To automatically resolve the linear ambiguity A, we use
a mesh normal matrix Nf ∈ Rp×3 obtained from the base
mesh, which is coarse yet contains sufficient low-frequency
information of the surface normal. Specifically, we regard
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Fig. 3. Illustration of the mapping of pixel intensities to the observation
matrix O. It shows surface normal can be estimated by solving dense
block matrices (Sec. 3.3.1) or by applying factorization-based method
(Sec. 3.3.2).

Nf ≈ NSA−1 = U3Σ
1
2
3 A−1. Using the pseudo-inverse of

Nf , we solve for A and obtain the surface normal estimate
N̂S as {

A ← (NT
fNf )−1NT

fU3Σ
1
2
3 ,

N̂S = U3Σ
1
2
3 A−1,

(3)

where N̂S is a disambiguated surface normal matrix that
corresponds to the subset S. To combine multiple solutions
for different overlapping sub-matrices OS , we compute a
weighted sum to consolidate them as

np(u) =
1

M

∑
S

(nf (u)TnS(u))nS(u), (4)

where nf (u),nS(u) ∈ R3 are unit vectors taken from a row
of Nf and NS , respectively, for pixel u. nT

fnS(= wS) is a
weighting factor for reducing the effect of outliers, which is
the cosine of the angle between the face normal and esti-
mated normal vectors, and the term M = ΣwS normalizes
the weighted sum. Figure 2 (c) shows an example of the
computed surface normal maps in the described manner.

The Block method computes the surface normals effi-
ciently by finding dense block structures in the observation
matrix. This method, however, has the following limitations:

• The observation matrix O tends to have an uneven
distribution of non-zero elements, which often makes
it difficult to find dense blocks with an appropriate
size.

• When O contains non-Lambertian observations (e.g.,
specular and shadow), the solution of Eq. (3) based
on the least squares solution is affected by outliers.

We address these issues by proposing a new method de-
scribed in the next section.

3.3.2 Factorization-based Method
We now describe a robust approach to surface normal
estimation via a low-rank matrix factorization method [2];
a Factorization method. To estimate surface normals N and
lightings L from the observation O, we solve the following
optimization problem.

Ñ, L̃=argmin
N,L

‖W �
(
O−NLT

)
‖1 +

λ

2

(
‖N‖2F + ‖L‖2F

)
,

(5)
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where� denotes a Hadamard product operator, W ∈ {0, 1}
is an indicator matrix to represent observed (1) or unob-
served elements (0). Equation (5) explicitly enforces the
rank of O to be 3 since it is expressed by the product
of the two rank-3 matrices N and L. Because there are
many possible factorization, we use the second term for
making the decomposition unique, i.e., selecting one where
the matrices N and L have Frobenius norm as small as
possible. They also make the objective to be less sensitive
to the issue of stacking in local minima [2].

The estimates Ñ and L̃ in Eq. (5) also have a shape-light
ambiguity A as described in the previous section. We regard
NfA ≈ Ñ and compute the pseudo-inverse of Nf to obtain
the disambiguated surface normals N̂ as{

A ← (NT
fNf )−1NT

f Ñ,

N̂ = ÑA−1.
(6)

By solving Eqs. (5) and (6), we obtain a low-rank approx-
imation of O denoted as Olow = ÑL̃T. When a sufficient
number of observations are given, the method effectively
recovers the low-rank approximation of O without being
affected by outliers. However, recording a large number of
images in practice is often inconvenient unless the imaging
setup is fully automatic.

To make the method available for fewer images, we
additionally enforce N to be similar to Nf by adding a `2
regularizer of N to Eq. (5) as

N̂, L̂ = argmin
N,L

‖W � (O′ − Z)‖1

+
λ1
2

(
‖N‖2F + ‖L‖2F

)
+
λ2
2

(
‖N−Nf‖2F

)
,

subject to Z = NLT. (7)

Compared to Eq. (5), now there is an additional term
‖N−Nf‖2F and an auxiliary variable Z that is used for
efficient optimization. We refer the method with the regular-
izer (Eq. (7)) as the Factorization with regularization method.
Equation (7) uses a new matrix O′ instead of O. Its purpose
is to remove the effect of surface albedo in O, since N is
compared with normalized surface normals Nf in Eq. (7).
O′ is computed by dividing elements in each row of O
with the maximum value in each row. This approximation
is based on the assumption that for at least one observation,
the corresponding surface normal and light direction vec-
tors are parallel. Under this approximation, the maximum
observed intensity is equal to the surface albedo since the
dot product between the surface normal and light direction
vectors becomes one. We found that this heuristic works
reasonably well on the various acquisition configurations
and surface BRDFs as we will see in the experiment section.

We optimize Eq. (7) by an Augmented Lagrange Multi-
plier (ALM) method [18]. Let us rewrite Eq. (7) as

argmin
Z,N,L,Y,α

‖W � (O′ − Z) ‖1 +
λ1
2

(
‖N‖2F + ‖L‖2F

)
+
λ2
2

(
‖N−Nf‖2F

)
+ 〈Y,Z−NLT〉+ α

2
‖Z−NLT‖2F ,

(8)

where we introduce a Lagrange multiplier Y and a scalar
α. The optimization procedure of the ALM method [18] is

as follows. First, it solves subproblems of Eq. (8) for N,
L, and Z iteratively (called inner-loop). Second, using the
previous estimates of N, L, and Z, the values of Y and α are
updated. Third, the inner-loop repeats with updated Y and
α until convergence (called outer-loop). Next, let us derive
the equations for the iterative optimization technique.

The sub-problems of Eq. (8) for N and L can be solved
in closed form by taking the first order derivatives of Eq. (8)
and setting them to 0. We get the solution as

N = ((αZ + Y)L + λ2Nf )(αLTL + λ1I3 + λ2I3)−1,

L = (αZ + Y)TN(αNTN + λ1I3)−1, (9)

where I3 is a 3×3 identity matrix. This derivation is possible
because the expression in Eq. (8) is quadratic in N and L. In
our implementation, we empirically set λ1 to 1√

p and set λ2
to 10λ1. After substituting N and L, we can rewrite Eq. (8)
as a subproblem of Z written as

argmin
Z
‖W � (O′ − Z) ‖1 +

α

2
‖Z −

(
NLT − Y

α

)
‖2F .

(10)

The solution to Eq. (10) can also be obtained in closed form
and is of the following form [2]:

Z = W �
(
O′ − S 1

α
(O′ −NLT +

Y

α
)
)

+ W̄ � (NLT−Y

α
), (11)

where we use Sa(b) = max(0, b− a) as an element-wise
shrinkage operator, and W̄ denotes the complement of
W. We repeat the inner-loop, which solves Eq. (9) and
Eq. (11) sequentially, until the decrease of residual error
e of Eq. (8) becomes very small. We stop the iterations
when |et − et−1| < 10−12 × et−1, where et and et−1 denote
the residual errors at the t-th and (t − 1)-th iterations,
respectively.

After N,L, and Z are optimized, Y is updated as

Y = Y + α(Z−NLT), (12)

where α is reset to min(1.5α, 1020). Using the value
of updated Y and α, we repeat the inner-loop if
‖O′ −NLT‖2F > 10−9 × ‖O′‖F . For initialization, we set
N, L and Z to random values sampled from a zero-mean
normal distribution. α and Y are initialized to 10−3 and 0,
respectively.

The illustration shown in Fig. 3 compares the two surface
normal estimation methods discussed in this section. The
first method is computationally more efficient than the
second method since the dimensions of each sub-matrix is
much smaller than the full dimensions of the observation
matrix. In terms of accuracy, both the methods can recover
accurate surface normals when the input images recorded
from densely sampled viewpoints are available. On the
other hand, the second method is more robust to outliers
and can produce more reliable results with the fewer input
images as it uses the full information at a time by exploiting
the low-rank structure. An evaluation of these two methods
is reported in the experiment section.
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3.4 Shape Refinement

Another advantage of working in the parameterized 2D
space is that mesh refinement can be performed by simply
estimating a displacement map in the 2D domain. The
shape refinement problem can be formulated as finding the
optimal displacement d ∈ R per pixel u as

x∗(u) = x(u) + d(u)nf (u), (13)

where nf is a unit face normal of the triangle inM to which
x ∈ R3 is mapped, and x∗ is the refined 3D position. Notice
that the geometry refinement is defined in the parameter-
ized 2D space using u as indices. Now, given photometric
normals np ∈ R3 obtained via photometric stereo and
the initial position x, we estimate the displacement d̂ by
minimizing the following energy function:

d̂ = argmin
d

∑
u∈U

(
np(u)T

∂x∗(u)

∂u

)2

+ λ
∑
u∈U

d2(u). (14)

The first term of Eq. (14) is a data term that encourages
the surface gradient at x∗ to be orthogonal to the orienta-
tion of photometric normal np. This term is related to the
one proposed by Nehab et al. [24]. However, we estimate
only a single displacement for each 3D point, optimizing a
single scalar instead of three coordinates thereby reducing
mesh refinement to the optimal displacement map estima-
tion. We use a cross-shape operator for computing partial
derivatives, i.e., [−1, 0, 1] for ∂

∂u , and [1, 0,−1]T for ∂
∂v . To

define partial derivatives at pixels on the boundary of two
charts, we use their respective inverse mappings to look up
neighboring 3D points on the mesh. In this manner, every
boundary pixel is connected just like the interior pixels
within a chart. This operation is important as it prevents
seams from occurring on the chart boundaries by encourag-
ing points across seams to have similar displacement values.
The second term of Eq. (14) is a regularization term that
discourages large displacements.

We optimize Eq. (14) by using an off-the-shelf sparse
linear solver. Specifically, we substitute x∗ in Eq. (14)
with Eq. (13), and take the first order derivative on the
equation. By setting it to 0, we have

0 =
∑
u∈U

(
np(u)T

∂x(u)

∂u
+ np(u)T

∂(d(u)nf (u))

∂u

)
+ λ′

∑
u∈U

d(u). (15)

Here, we treat nT
p (u)

∂nf (u)
∂u as a small constant c and λ′ is

defined as λ
c . Equation (15) constitutes sparse linear system

of variable d(u), e.g., Md = b. We use a QR decomposition-
based sparse linear solver [4] for the problem. λ is empiri-
cally set as λ = 0.3.

An example of an estimated displacement map is shown
in Fig. 2 (d). In our method, the level of geometric details
is controlled by the resolution of U regardless of the res-
olution of the base mesh. For example, a base mesh with
as few as 2K vertices with a 512× 512 displacement map
can generate 262K effective vertices. Since our approach
directly estimates a displacement map on a coarse mesh,

our 3D models can be efficiently stored and rendered us-
ing modern graphics hardware that supports displacement
mapping [31].

4 RECONSTRUCTION PIPELINE

This section describes our reconstruction pipeline, in partic-
ular the SfM [30] and MVS pre-processing steps.

Stereo matching. Using the visibility of the SfM point
cloud, we estimate a depth range for each camera viewpoint
and then perform plane-sweep stereo matching for each
viewpoint using two other images captured from adjacent
viewpoints under identical lighting. Using normalized cross
correlation as the matching cost and semi-global matching
based cost aggregation [12], we first estimate a dense depth
map with discrete depth estimates. Sub-pixel refinement is
then performed on these depth maps using a standard local
parabolic refinement of the aggregated matching costs [12].
We compute per-pixel confidence associated with the depth
map using the ratio of the minimum and the second smallest
costs to measure distinctiveness and prune depth estimates
at pixels with very low confidence. See Fig. 1 for an example
of such a depth map.

Mesh extraction. The filtered depth maps are fused using
an energy minimization framework based on volumetric
graph-cuts [35]. The step computes an implicit 3D shape
of a closed object by labeling voxels on a uniform 3D grid
with binary labels – occupied, or empty. This optimization
is formulated using a discrete binary Markov Random Field
using unary and pairwise terms on a 6-connected voxel grid
with a typical resolution of 1003.

The unary potentials are computed using free space
occupancy of the 3D points in the depth map [10], where
the contributions from depth maps are weighted by their
confidences. The pairwise potentials are derived from the
sub-voxel positions of these 3D points. As our acquisition
setup allows simple foreground silhouette extraction, we
also include a silhouette-based unary term in the energy –
voxels that are projected outside the silhouette are given
a high penalty for taking the label occupied. The optimal
binary labeling can be exactly computed in an efficient man-
ner using graph cuts [1]. Finally, from the labeled grid, we
recover a triangulated meshM using marching cubes [20].
We prefer MVS in computing our base mesh over a visual-
hull based approach [11], since MVS usually yields more
accurate mesh in our experience, especially for objects with
large concavities or complex topologies.

5 EXPERIMENT RESULTS

We evaluate our method using both synthetic and real-
world datasets. In the synthetic data experiment, we quan-
titatively evaluate the two key steps of our method; surface
normal estimation and shape refinement. In the experiments
using real data, we show extremely detailed 3D reconstruc-
tions of various real-world objects.

5.1 Experiments on Synthetic Data
In this experiment, the input images are synthesized by
rendering the ground truth model from varying viewpoints
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under different lightings. To simulate real-world capturing,
we use a perspective camera model with 25◦ field of view
and the pixel intensities are normalized to fit in the range of
0 to 255.

We use publicly available BUNNY, GARGOYLE, HAPPY-
BUDDHA, and SITTING-BUDDHA models that show different
topologies and geometric details. Given the ground truth
mesh G, we measure the accuracy of the refined mesh R
by computing either of the Accuracy or the Completeness
metrics that are used in the Middlebury multiview stereo
benchmark [28]. These are based on asymmetric distances
distR→G and distG→R, where distA→B represents the mini-
mum distance from vertices of A to vertices of B. Accuracy
refers to the distance d ∈ distR→G such that x% of the
points are within distance d to G. Completeness refers to the
proportion of vertices, where distG→R is less than threshold
distth. In the experiments, we set x = 90 and distth = 0.01.
For consistency, the 3D models are scaled by setting the
radius of their tightest bounding spheres to unity. We use the
screened Poisson surface reconstruction [16] for producing
the final mesh that is used for quantitative evaluation.

For the purpose of assessing the accuracy of surface
normal estimation and mesh refinement, we prepare the
base mesh synthetically instead of computing it via SfM.
The base meshes are generated by the following procedures
applied to the ground truth mesh.

Mesh perturbation. We use the Taubin operator [32] for
mesh smoothing and then add random vertex displace-
ments as noise. The degree of noise is defined in three
levels; the level 1 adds 0.05% of uniform noise, the level
2 adds 0.1% of uniform noise, and the level 3 adds 0.15% of
uniform noise.

Mesh resolution. The numbers of triangles for the original
meshes vary from 70K to 1M . In this procedure, we gen-
erate low-resolution meshes with approximately 25K , 50K ,
and 70K faces by a mesh simplification technique [13].

In the following, we describe the experimental results of
surface normal estimation and mesh refinement.

5.1.1 Evaluation of Surface Normal Estimation
We first evaluate the accuracy of three surface normal esti-
mation methods described in Sec. 3.3, i.e. the Block, Factor-
ization, and Factorization with regularization methods. For this
experiment, we use the BUNNY model with the perturbation
level 3 as the degraded base mesh. The rendered images
have a resolution of 500× 500 pixels.

We designed five geometric configurations of cameras
and light sources to simulate different patterns of non-zero
elements in the observation matrix O. The five capture
configurations consist of Hemisphere, Ring, and Ring Light
with sparse and dense viewpoints as illustrated in Fig. 4(a).
In this experiment, the light directions are treated unknown;
thus, it is a multiview uncalibrated photometric stereo set-
ting. For rendering, besides the Lambertian reflectance, we
have also included non-Lambertian BRDFs, such as Blinn-
Phong and Alum-bronze BRDFs provided by Matusik et
al. [22] to evaluate the robustness of our algorithms in the
presence of such non-Lambertian materials. The BUNNY
model rendered with the different reflectances are shown
in Fig. 4(b).
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Fig. 4. Evaluation of the normal estimation algorithms on the five syn-
thetic capture setups (shown in (a)) and the three different BRDFs
(shown in (b)). A red dot in (a) indicates a point light source. In
(c), each group of bar plots shows the Accuracy metric (×10−3) for
the three surface normal estimation methods. The Factorization with
regularization method is most stable and accurate in various capture
configurations and BRDFs (see Sec. 5.1.1 for more details). These
results were obtained with the BUNNY model with perturbation level 3
as the base mesh. The Accuracy metric of the base mesh is shown by
the red line.

The experiment results are shown in Fig. 4(c). In the
case of Hemi. Dense (HD) camera setup with the Lambertian
reflectance, all the three normal estimation methods have
similar accuracy. In the Ring Light (RL), Ring Sparse (RS), and
Ring Dense (RD) setups, where rank-deficient matrices can
occur due to co-planar light source positions, the Factoriza-
tion method failed to refine the base mesh, whereas the Fac-
torization with regularization method consistently achieved
the best results. This is due to the addition of the regu-
larization term ‖N−Nf‖2F , which effectively avoids de-
generate solutions. The Block method also achieved stable
results with rank-deficient input matrices. We observe that
the Block method can also avoid co-planarity because it
utilizes the approximate surface normals Nf to obtain a
good local solution. Due to the avoidance of the co-planar
light source positions, the results of the Hemi. Sparse (HS)
setup outperforms the results of RD setup even though the
HS setup has fewer input images.

Regarding the accuracy variation with non-Lambertian
BRDFs, we have observed that the Factorization method is
less accurate in the presence of non-Lambertian reflectances
due to the large amount of outliers in the observation
matrix. In contrast, the Block and Factorization with regu-
larization methods yield more accurate results because of
the guidance of approximate surface normals. The results
of Factorization with regularization are superior to the results
of Block since the Factorization with regularization method can
robustly handle outliers with a `1 penalty function defined
in Eq. (7). Close-up views of the refined BUNNY models from
this experiment are shown in Fig. 5.

5.1.2 Evaluation of Light Direction Estimation
As a by-product of the surface normal estimation, our
approach also estimates the light directions via Eq. (8).
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One of Images 
used for refinement BlockBase mesh Factorization Factorization with 

regularization Ground truthHernandez et al. [11]

Fig. 5. Close-ups of the BUNNY model refined by the three surface normal estimation methods and Hernandez et al . [11]. The model is rendered
with the Alum-bronze BRDF and the input images were captured in the Hemi. Dense (HD) light and camera configuration shown in Fig. 4.

Ours: 0.90°
Hernandez: 1.37°

Lambertian

Ours: 2.64°
Hernandez: 1.69°

Blinn-Phong

Ours: 3.22°
Hernandez: 8.05°

Alum-bronze

Fig. 6. Comparisons of the light directions estimated by our approach
and that of Hernandez et al . [11]. The directional errors for the three
synthetic datasets are displayed. The spherical heat maps, which is only
used by Hernandez et al . [11], indicate the number of inlier points as a
function of light direction. The center of the circle corresponds to the
ground truth light direction. The weak consensus of the heat map (par-
ticularly in Alum-bronze) indicates weak confidence on the estimated
light direction because there are many probable light directions that
have many inlier points. Our estimated light directions (yellow dots) and
results of Hernandez et al . [11] (green dots) are overlaid on the heat
maps for comparisons.

The method for estimating light directions proposed by
Hernandez et al. [11] is closely related to our approach
because it is also robust to outliers and utilizes Lambertian
shading model.

The method described in [11] picks any three points on
an object and solves for the light direction using Lambertian
shading model. The synthesized image intensities using
this light direction are compared with the observed image
intensities, and number of inlier pixels are counted. This
step is iteratively performed, and the light direction with the
maximum number of inliers is selected as the final estimate.

Figure 6 compares the light directions estimated us-
ing our approach and that of Hernandez et al. [11]. For
this experiment, we use the synthetic dataset introduced
in Sec. 5.1.1. Although the surface normal of the base mesh
is very noisy (as shown in Fig. 5) and some of the dataset
exhibit non-Lambertian shading, both methods estimate rea-
sonably accurate light directions with small angular error.
This is not surprising because both approaches are built
upon the theory of robust statistics. In case of Alum-bronze,
the inlier heat map obtained in [11] shows a weak consensus
which results in an erroneous light direction estimate. This
also happens when surface albedo is non-uniform as dis-
cussed in [11]. Their method directly refines the geometry
using a least squares method that involves estimating the
light directions and requires an assumption that the surface
has Lambertian reflectance properties. As shown in Fig. 5,
this approach is not resilient to strong outliers and fails to
refine the geometry when the Alum-bronze BRDF is used.

5.1.3 Evaluation of Mesh Refinement
This test focuses on comparing the quality of our re-
fined mesh to those obtained using the state-of-the-art ap-

proaches [11], [24]. In order to alleviate other factors, which
may affect the quality of the refined mesh, we allow all
the methods to use the known directions of distant light
sources and camera poses. For this experiment, we use the
BUNNY, GARGOYLE and HAPPY-BUDDHA models. They are
rendered at 712× 712 pixel resolution with 8 different light
directions and 16 distinct viewpoints. Therefore, 128 images
are used in each case. We use the low-resolution meshes as
the base meshes.

In this experiment, we report the quality of the refined
geometry by applying the Block method for surface normal
estimation, since we found that the Factorization with regular-
ization method has the same refinement quality. To simulate
the real-world setting, we designed two more tests referred
to as the Mesh perturbation test and the Mesh resolution test
both of which utilizes the degraded base meshes generated
using the Mesh perturbation and Mesh resolution steps de-
scribed earlier.

Table 2 shows the quantitative result of these tests. For
the Mesh perturbation test, our method consistently outper-
forms Nehab et al. [24]. This is because our method naturally
avoids mesh flipping and overlapping triangles. In this test,
the Accuracy and Completeness metrics of our results are
comparable to those of Hernandez et al. [11] as the effective
resolution of the base mesh is enough to express geometric
details.

As our approach estimates a displacement map whose
resolution is derived from the original image resolution,
our method recovers fine geometric details regardless of the
resolution of the base mesh. According to the evaluation
metrics of the Mesh resolution test shown in Table 2, the
quality of our refined mesh is independent of the resolution
of the base mesh.

Figure 7 shows the cumulative error distributions of
the Accuracy metric. The percentage of vertices within an
accuracy threshold is plotted for different values of the
threshold. The plot shows that our method is consistently
the most accurate, except for the HAPPY-BUDDHA model
where our method is comparable to [11]. The refined meshes
for HAPPY-BUDDHA are shown in Fig. 8. Our method faith-
fully reconstructs fine details such as the necklace and the
flower in the model.

5.1.4 Computation Time
To observe the trade-off between the mesh resolution, re-
construction accuracy, and computation time, we addition-
ally compare our approach with Nehab et al. [24]. Because
of the different pre-processing stages of the two methods
prior to the mesh refinement, we report timings for only
the mesh refinement stage and the Accuracy metric of the
output in Fig. 9. We use the SITTING-BUDDHA model in
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TABLE 2
Comparison on synthetic dataset. In this experiment, each method refines degraded meshes, and the results are evaluated using ground truth.

Each cell of the table shows the Accuracy (×10−3) and Completeness (%) metrics for two experiments, mesh perturbation test and mesh
resolution test (see Sec. 5.1.3 for more details).

BUNNY GARGOYLE HAPPY-BUDDHA

Mesh Perturbation Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3
Nehab et al. [24] 2.87, 99.7 2.93, 99.7 6.31, 93.6 4.72, 99.9 4.56, 99.9 4.58, 99.9 4.01, 99.8 3.95, 99.8 4.06, 99.8

Hernandez et al. [11] 1.66, 99.7 2.30, 99.7 5.51, 92.4 3.03, 100.0 3.40, 100.0 4.15, 100.0 2.92, 99.8 3.42, 99.9 3.04, 99.9
Ours 1.50, 100.0 1.94, 100.0 2.67, 100.0 3.43, 100.0 3.47, 100.0 3.70, 100.0 3.50, 99.5 3.65, 99.5 3.50, 99.5

Mesh Resolution 70K 50K 25K 70K 50K 25K 70K 50K 25K
Nehab et al. [24] 3.56, 99.9 5.44, 94.4 7.54, 67.8 6.02, 98.5 8.38, 83.6 11.56, 49.3 4.82, 99.2 6.51, 91.2 8.37, 64.8

Hernandez et al. [11] 1.11, 99.8 1.43, 96.7 1.67, 76.0 3.64, 96.7 4.14, 89.8 4.88, 64.5 2.76, 98.3 3.43, 93.4 4.29, 72.1
Ours 1.39, 100.0 1.40, 100.0 1.41, 100.0 3.33, 100.0 3.37, 100.0 3.45, 99.9 3.45, 99.6 3.48, 99.5 3.49, 99.5
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Fig. 7. Cumulative error distributions of the Accuracy metric for three
synthetic dataset; BUNNY, GARGOYLE, and HAPPY-BUDDHA. The graph
corresponds to the mesh perturbation test in Table 2 when perturbation
level is 3. On BUNNY and GARGOYLE, our method is consistently the
most accurate. On HAPPY-BUDDHA, the accuracy is very similar to
Hernandez et al . [11].

Input Hernandez Nehab Ours

Fig. 8. Perturbed HAPPY-BUDDHA model (denoted as input) and re-
finement results by three methods; Hernandez [11], Nehab [24], and
ours. The result corresponds to Mesh perturbation test in Table 2 where
perturbation level is 3.

this experiment to observe the refinement of fine detailed
regions. The base mesh has only 50K faces, which is not
enough to convey the full geometric details of the original
model. To recover the fine details, Nehab et al. [24] requires
very high mesh resolution (1.8M faces) whereas our method
uses a much coarser base mesh. As a result, our mesh
refinement step is computationally more efficient than that
of Nehab et al. [24] when both the methods are configured
to produce the results with the comparable accuracy. We
report the timings of Nehab et al. [24] method by using the
implementation provided by the authors.

On average, the overall computational time of our
method (excluding data acquisition and pre-processing)

3.3 10-3

4.2 sec.

Base 
mesh
(50K)

Ground 
truth
(1M)

Nehab
300K

4.6 10-3

2.9 sec.

Nehab
1.8M

3.5 10-3

18.3 sec.Test model

Ours

Fig. 9. Comparison with Nehab et al . [24] on the computational cost
and accuracy of the refined mesh. Mesh resolutions, accuracies, and
computation times are shown under the sub-figures. Our method does
not require tuning the mesh resolution because it is automatically deter-
mined by the input image resolution.

takes less than a minute to run if we utilize the Block method
for the surface normal estimation. If we use the Factoriza-
tion with regularization method, the running time become
30 minutes on average. Our methods are implemented in
C++ without optimization. All the reported timings are
measured on a system equipped with an Intel i7 quad-core
3.06GHz CPU and 8GB memory.

5.2 Experiments on Real-world Data
In this section, we show the real-world experiments. We first
describe two imaging setups for real-world 3D reconstruc-
tion, and then discuss the quality of the results. We calibrate
the camera intrinsics and the camera response function a
priori and assume that they remain unchanged during the
data acquisition. The extrinsic parameters are estimated
using a generic SfM pipeline [30], and light directions are
also estimated via our method.

5.2.1 Two Flexible Acquisition Setups
Since the proposed method does not require geometric
calibration of the light source and the camera, we can have
a flexible imaging setup with various camera and light
configurations. In this work, we demonstrate two practical
setups, one automated and one manual.

Automated imaging setup. Our automated acquisition
setup sequentially captures images using programmed de-
vices. The system consists of a rotation stage, a LED array,
and two cameras as illustrated in Fig. 10 (a). All images
of the target object are captured automatically using a re-
motely controlled rotation stage with synchronized cameras
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LEDs
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Target object
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Handheld 
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Manual 
Rotation

Fig. 10. Two imaging setups for real world object capture. (left) Au-
tomated setup. It consists of a rotation stage, a light array and two
cameras. (right) Manual setup. It only requires a camera and a light bulb.
In both setups, several images are captured under varying lighting for a
particular camera orientation.

and LEDs. A typical acquisition captures 312 images (24
viewpoints, 15 degrees apart illuminated by 13 different
LEDs) and takes about three minutes. The image resolution
is 1024×768 pixels. In this setup, instead of the generic SfM
approach [30], camera pose estimation methods tailored to
turn-tables [5] can also be used.

Manual imaging setup. In this setup, the target object, the
camera and the light source are moved manually. We use an
incandescent light bulb and Canon Mark-1D DSLR camera,
and the target scene is recorded in a dim environment
with low ambient light. Specifically, we record the target
object from a fixed viewpoint multiple times under varying
lightings, and rotate the object manually and repeat the
same for acquiring the input data. The image resolution is
3908 × 2600, and in this test, we recorded images of seven
object poses under six light source directions.

Capturing multiple images by varying the light position
for each viewpoint is preferable way to capture the dataset
if there are at least a few viewpoint variations covering
the target object. It makes surface normal estimation more
accurate because any observable 3D points on the surface
have intensity profiles with perfect pixel alignment for
certain viewpoint. As an example, 3 viewpoints and 8 light
variations for each viewpoint (3V×8L) shown in Fig. 11
indicates lower intensity reconstruction error and better
refined geometry compared to 24V×1L or 8V×3L.

5.2.2 Reconstruction Results
Figure 17 shows the result of five real scenes whose images
are captured using the automated imaging setup. Since the
two normal estimation methods (the Block and Factoriza-
tion with regularization methods) show very similar results,
especially for objects with Lambertian reflectance, and the
second method consistently outperforms the first method in
terms of accuracy and robustness, we present the results
from the Block method as the lower bound accuracy of
our reconstruction method. Also, from our observation, the
Block method consistently works well when the viewpoint
sampling rate is high enough, which is the case in our
automated setup. The first two objects shown in Fig. 17,
BUDDHA-STATUE and AGRIPPA, have mostly uniform albe-
dos. However, BUDDHA-STATUE is made of copper and has
many specular reflections. Even though our Block method
assumes Lambertian reflectance, the normal aggregation
method described in Eq. (4) effectively handles outliers
arising from non-Lambertian reflectances.

Base mesh 24V 1L
Fact. with Reg.

Err: 0.042 Err: 0.037

8V 3L
Fact. with Reg.

Err: 0.028

3V 8L
Fact. with Reg.

24V 1L
Block

Fig. 11. Reconstruction of the DOLL-2 dataset with different surface
normal estimation methods and imaging scenarios. We only use 24
images out of the 312 images in this experiment. V indicates the number
of viewpoints and L is the number of light variations for each viewpoint.
Every 24 image set has viewpoint variations covering the target object.
The average intensity reconstruction error ‖O−Olow‖1 is shown on the
sub-figures.

Fig. 12. Two color images from the ACCORDION MAN dataset.

The other three objects in Fig. 17, DOLL-1, DOLL-2,
and TEAPOT, have more interesting topologies and multiple
albedos. In DOLL-1, we can observe the detailed shape of
buttons on the jacket of the right doll as well as facial expres-
sion of the dolls, which cannot be seen in the original base
mesh. The English characters in the middle region of DOLL-
2 are clearly visible in the final mesh. The geometric details
on the TEAPOT model are faithfully reconstructed. Note that
these embossed patterns are only a few millimeters deep. On
the other hand, an artifact can be seen below the left doll’s
skirt in DOLL-1 as indicated by red rectangles in Fig. 17.
Since no valid normal could be estimated from any of the
viewpoints, our method is unable to refine the coarse mesh
in this region.

Figure 13 shows the reconstruction result of ACCORDION
MAN which is captured using the manual setup. For ref-
erence, an example RGB image of the ACCORDION MAN
sequence is shown in Fig. 13. The height of the object is
approximately 22cm. As shown in Fig. 12, the ACCORDION
MAN model has rich surface albedo and a complex 3D
shape. Due to the high-resolution of the input images, the
geometry of the base mesh is quite reliable. From this base
mesh, the Block method is applied and fine geometric details
are recovered in the refined mesh. The geometric features
on the face and the hair of the model can be clearly seen
in the refined 3D model. It is worth noting that photometric
cues are able to add sub-millimeter level of geometric details
which is challenging for multiview stereo algorithms.

To study the effect of the observation matrix structure
on the two surface normal estimation methods, we experi-
mented with the DOLL-2 sequence and uniformly reduced
the number of input images to simulate the case where only
one light source is used for each viewpoint. The results
are shown in Fig. 11. Compared to the Block method, the
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Fig. 13. Reconstruction of ACCORDION MAN. Comparison between the base mesh (left) and refined mesh (right) rendered from two different
viewpoints. The geometric details on the face, hair and bumpy texture on the pants as shown in the insets on the top. Note that facial expression,
hair geometry and bumpy texture on the pants appears on the refined geometry which has sub-millimeter level accuracy. The input images for this
result were captured with the manual imaging setup shown in Fig. 10(b).

Base mesh Fact. with reg.Block
Fig. 14. Comparison of the reconstruction quality using the Block and
Factorization with regularization methods. The Block method is more
susceptible to outliers but reconstructed details are slightly sharper.

Nehab 140K Nehab 1.8M Ours
Fig. 15. Zoom-in views of the ACCORDION MAN models obtained using
the method of [24] and our method. Our models encode the geometric
details using displacement maps (10002 pixels in this case without
requiring high resolution mesh.).

performance of the Factorization with regularization method
degrades gracefully when the pattern of the observation
matrix is highly unstructured.

In Fig. 14, we show the qualitative comparisons of two
ACCORDION MAN models reconstructed using the esti-
mated normals from the Block and Factorization with regular-
ization methods, respectively. The two approaches generate
similar results although there are subtle differences. The

result from the Block method shows sharper details than
the result from the Factorization with regularization method.
However, the Block method results in a few artifacts in the
refined geometry whereas the result from the Factorization
with regularization method is more stable and robust to
outliers. Looking at the result of the Block method shown
in Fig. 14, where the observed pixels are quite dark, we
can see uneven geometry with the Block method, while the
Factorization with regularization method consistently avoids
these problems.

Figure 15 shows the 3D meshes obtained using our
approach and those generated by the method of Nehab et
al. [24] at two different resolutions. The micro-geometry on
the shoes is only captured in our result due to the effective-
ness of the high resolution displacement maps. Here, we
used the same light directions for both methods.

5.2.3 Metric Error Analysis For Different Configurations
Figure 16 shows 3D reconstructions of the CICERO dataset,
where the images were captured using the manual imaging
setup. We used a structured light based 3D object scanner [7]
to acquire the ground truth geometry in metric units. Since
the 3D model reconstructed by our method has a scale am-
biguity, we rescale the reconstructed model using Geomagic
studioTM software to align it with the ground truth.

Various configurations of our approach are evaluated
in this experiment as shown in Fig. 16. When the MVS
geometry is utilized as the initial geometry, Factorization
with regularization methods outperform the Block methods
although the latter group produces models with sharper
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Fig. 16. Reconstruction results obtained using our method for the CICERO dataset. The metric errors of the reconstructed 3D models are shown.
In this experiment, we measure accuracy by running our method with different configurations. On the right side, the error plot displays these
configurations. For example, bloc-vis-16 indicates the block based method with visual hull as the initial geometry and 16 input images. The black
color in the error map indicates that the errors are out of the color map range.

geometric details. When comparing the different number
of images (16 or 64 images), we observe that using more
images generally helps to achieve better accuracy. In another
experiment we used a visual hull reconstruction for the
initial geometry instead of the model obtained using MVS.
In this case, highly concave regions such as nose or shoulder
of the CICERO model shows significant errors because our
approach cannot handle large errors in the initial geometry.
On average, the metric error is 3.0017 mm in case of fact-
mvs-64. The overall error maps from this experiment can be
found in the supplementary material.

6 DISCUSSIONS

Our 3D reconstruction method enables acquisition of high-
fidelity 3D models by fusing photometric and geometric
cues. The key benefit of planar mesh parameterization is
the maximum usage of photometric cues by avoiding both
oversampling and undersampling problems.

We have proposed two approaches for reliable surface
normal estimation. The first approach, Block method, has
a merit in its computational efficiency, and it is applicable
when the observation matrix is well-structured. The other
approach, Factorization with regularization method, outputs
reliable results regardless of the observation matrix struc-
tures at a cost of more computation. As a general guideline,
when the number of observations is large and the target
scene has a near Lambertian reflectance, we can rely on
the Block method. Otherwise, it is recommended to use Fac-
torization with regularization method for obtaining accurate
results.

Our algorithm assumes that the initial geometry is rea-
sonably accurate and the misalignment between the over-
lapping images is not severe on the smooth surfaces. In the
future, we plan to explore a joint optimization approach that
simultaneously estimates surface normals and scene depth
for greater accuracy and robustness. Recovering surface
reflectance in addition to accurate 3D shape is another
interesting direction for future work.
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BUDDHA-STATUE

AGRIPPA

DOLL-1

DOLL-2

TEAPOT

Fig. 17. Reconstructions obtained using our method for BUDDHA-STATUE, AGRIPPA, DOLL-1, DOLL-2, and TEAPOT scenes. Each row shows from
left to right one of the input images, the base mesh from MVS, and the refined mesh. The corresponding surface normal and displacement maps
are shown in the supplementary material. Areas where our method performed poorly are highlighted by red rectangles; these occur at texture-less
dark regions. The input images for these results are captured with the automated imaging setup as shown in Fig. 10(a).


